How a Voltage Regulator Works: LM7805

Voltage regulators are one of the first electronic components you get introduced to as a hobbyist. Really useful when starting out, it simply takes a voltage that is too high, and reduces it down to a set voltage that you want, usually defined by the component. Solves the problem of having batteries or power supplies being a different voltage to the thing you are powering (such as your Arduino), and at as little as 50p from ebay they are easily acquired. Sounds like a great solution, but there is an issue, they are terribly inefficient. They are known to get very hot when used at high currents, and often need hefty heatsinks to stop the magic smoke from being released. To demonstrate why they get so hot we need to think about what happens during use. Remembering Kirchoff, the current going into a system is the same as the current going out of the system. If we use a simplified version of the regulator, the only thing this device changes is the voltage of the output. Due to the minimal current lost powering the circuit we assume the vast majority of power lost is in heat. Using the basic equation of:

Power (W) = Voltage (V) x Current (I)

So if we use an example of the LM7805 made by On Semiconductor (previously Fairchild) that can regulate 5V at 1A. It’s a pretty standard component, and is very typical of a voltage regulator.

If we use a 9V input the power going in is 9V x 1A = 9W.

The output power is 5V x 1A = 5W.

This means that there is 4W of power being dissipated from the regulator as wasted heat. This is a large amount when considering the size of the packages available. When thinking about problems excessive heat can cause in a circuit, it can quite easily damage itself and other components around it when not designed properly. It is why there are often big chunks of aluminium attached to the back of the components to act as a heat sink.

7805 chip in a TO-220 package. Notice the heat sink on the rear with a screw mount.

This post isnt meant to dissuade you from using regulators, they have their place in electronic circuits, and are a great starting point. All electronic engineers need to have a broad understanding of the advantages and disadvantages of linear voltage regulators to be able to handle them properly.

How it Works

LM78xx schematic 2 coloured
Schematic of the silicon inside an LM78xx device, coloured relating to the function of each area.

The above schematic can be found on the datasheet, but it’s been coloured in to show the different sections of the circuit.

The most important component in the above schematic is Q16 (Red), it controls the current between the input and output, therefore the voltage. It is placed in a darlington pair configuration with Q15 (Orange). In this configuration Q16 is amplifying the current amplified by Q15. This means that Q15 can be used to introduce error feedback. The Blue section contains a voltage divider that scales the output voltage so that it can be used by the bandgap circuit. This bandgap circuit is found in the yellow section (Q1 and Q6). This bandgap reference produces an error signal that is fed into Q7 (orange). A bandgap is used because it can provide a stable output even when the temperature of the device changes.

The orange section takes this error and amplifies it through Q15 and the darlington configuration described earlier. The purple section has overheating protection (Q13) and excessive output current protection (Q14). Occasionally on these schematics you also find excessive input voltage protection marked as Q19 in this section. These shutdown the regulator in fault conditions like overcurrent or getting too hot. The Green section is known as the “start up” circuit, because it provides the initial current needed to power the bandgap circuitry. This gives a jumpstart to the circuit when it needs it.

I chose the LM7805 because 5V is a common value to be used, but the LM78xx series has many different preset voltage versions. The bandgap circuit is trying to get its input to 1.25V, this is from the voltage divider found in the blue section. As R20 is a variable resistor, the voltage divider can be calibrated during manufacture to output exactly 1.25V at any chosen output voltage. This is great for a manufacturer because they make lots of the same chip, and it can be made to suit any voltage output they want. This is also similar to the way some adjustable voltage regulators work, such as the LM317. In adjustable chips, the voltage divider is made by the designer externally, meaning it can be applied to any situation with a simple change of resistors.

Basic Configuration

Looking at the datasheet, there are many applications for the device. but the simplest one is just an input and an output. All that’s needed is a couple of decoupling capacitors to smooth out AC signals and random noise. Voltage regulators work best with clean, smooth power. There is also the need, due to the voltage drop across the transistors, for the input voltage to be at least 2V above the required output. This is always a good rule of thumb to go by when it comes to regulators.

LM78xx basic configuration
LM78xx basic configuration

I would recommend people read the datasheet and have a play with different voltage inputs and current outputs, see how easy it is for it to get hot. In that datasheet there are some other good applications using the device, you can turn it into an adjustable voltage output, constant current supply and high current supply. These are also good projects for learning more about transistors and op amps. Equally, there are other types and brands of regulator out there, some cheap, and some quite expensive, it is worth shopping around forĀ  the ones that suit you.