What We Learnt From The Peter Beck AMA

Peter Beck is the CEO and founder of Rocket Lab, a US/New Zealand orbital launch provider who is trying to provide access to space for small satellites. On at 19:00 UTC on April 5th he participated in a Reddit AMA on /r/space, where he answered as many questions as he could about the Electron launch vehicle and the upcoming ‘it’s business time’ launch, as well as what the future of space access looks like. It was a good AMA, he answered lots of questions, and the full post can be found here. This post is to round up some of the most common and important questions he got asked for those interested.

Peter Beck by Electron
Peter Beck, president of Rocket Lab in front of the Electron launcher. Credit: Rocket Lab

The most questions came with reference to SpaceX, and the way their business model compares to Rocket Lab.

SpaceX didn’t see a market It’s known that the Falcon 1 was a similar size to the Electron and they quickly moved on from it. So people asked if SpaceX didn’t stay with it, why will it work for Rocket Lab?  Peter makes the point that SpaceX retired that rocket 10 years ago, and most of Rocket Labs customers didn’t even exist then. He mentioned that Electrons manifest is fully booked for the next 2 years for dedicated flights. He also doesn’t see a slowdown in demand anytime soon.

Reusability – On the SpaceX front, they have made big inroads to reusability and the Electron is not reusable, so many asked about plans to make a reusable version. The simple answer he gave was that reusability makes sense for medium lift vehicles like the falcon 9, but it doesn’t scale well to small vehicles. So it isn’t on the radar for them at the moment.

Electron Launch Vehicle
Rocket Lab’s first Electron rocket, seen here in a hangar at the company’s New Zealand launch site. Credit: Rocket Lab

Other Rocket Manufacturers – As there are many small rocket manufacturers popping up, and attempting to compete in this space, many wanted to know what the market is actually like for them. His comment was that not all of those manufacturers will make it, and they are currently the only dedicated small launcher that has actually made it to orbit. Others were quick to point out that other rockets of similar size do launch but nowhere near as frequently and do not have the same quality or launch frequency as the Electron.

Where else will they launch from – Currently they have a single launch site, but many wanted to know if they will branch out, to different pads of even different countries, maybe even pad-39A. He mentions that he wants to have many potential launch pads to serve many different inclinations, but Launch Complex 1 is a good start.

Going Bigger – There were lots of questions about making a bigger rocket, like an Electron Heavy. He made a point of saying they are currently only making one product really well. They have no plans to make bigger rockets, and they understand the market they are in. Rocket lab do not want to compete with SpaceX on these launches. He mentions that they can launch a huge amount of spacecraft to LEO, and going bigger only allows a 2% increase in market at the moment. That being said they will continue improving the rocket as they go along.

electron on the pad
The Electron launch vehicle waiting on the pad for takeoff, Credit: Rocket Lab

Using composites – As the LOX tank and other parts are made of carbon composites, there were questions about the difficulty surrounding the design and development of that. He talked about the several years developing and testing the composite tanks. The two main issues being microcracking and oxygen compatibility. They ended up with liner-less tanks with common bulkheads that have similar oxygen compatibility to aluminium but much lighter mass. All the composite manufacturing is in house. Some wanted to know how they manage to use such expensive processes, and he says that although carbon fibre is expensive, when done right you can use very little of it.

Why black – with most rockets out there being white, to help with the thermal efficiency, why did they go for black? Well the simple answer he gave was it looks better. Many engineers wanted to paint it, but the thermal experts made a special effort to make sure they could keep it black. Also, it does save some time/money/weight on paint.

It’s all about the money – The key question is, is it profitable, and when will they start making those profits? Well Peter states that they will see positive cash flow after their 5th flight. Each launch costs $4.9 million to each customer, and they get a dedicated launch, so no need to worry about rideshares where they have less control.

Electron Launch
Electron Rocket takes off from Rocket Lab Launch Complex 1 during the “Still Testing” mission. Credit: Rocket Lab

Adding to space junk – In the news recently, there has been lots of the junk that currently floats in space, so there were some questions on how the Electron tries to stop being just more rubbish. Peter talks about the Curie stage of the rocket that is designed to fix this issue. It puts it the second stage into an orbit that makes it deorbit quickly, and the kick stage can deorbit itself. Also most of the LEO payloads they will orbit will deorbit within 5-7 years.

Launch cadence – A few asked how often they are able to launch rockets, or at least the plans to do so. He mentioned that the current plan is to launch once a month for the next year, then once every two weeks, and then double down from there. The Launch complex 1 can support a launch every 72 hours, which is pretty impressive.

Job opportunities – As you would expect, many people asked how you get a job/internship at Rocket Lab. Peter gave a link to email a resume to, but mentioned that the bar is high, they are open to new people but they have to be passionate, and enjoy (and be good at) what they do. They are a small team trying to do big things! They care about what you do outside your formal education, what are you passionate about? what have you built, tested and broken?

Rocket testing
Rocket Lab testing its engines for the Electron launch vehicle. Credit: Rocket Lab

Some hardcore technical answers

  • Each propellant had a dedicated and independent pump system rather than a single electric motor.  That was due to wanting super accurate control over the oxygen fuel ratio and startup and shutdown transients.
  • Ignition is from an augmented spark igniter (a spark plug surrounded by a tube, what acts sort of like a blowtorch).
  • The engine is fully regeneratively cooled, 3D printed chamber.
  • The area ratios for the booster and vacuum nozzles are 14 and 100 respectively.
  • The steering and ullage on the upper stage is controlled by cold gas RCS and PMD.
  • The whole vehicle is non pyro, the decouplers are all pneumatic.

Falcon 9 Re-Supplies the ISS on CRS-14

Launch of CRS-14
Threatnigh thunderstorms, an image taken by a sound triggered camera at Space Launch Complex 40. Image from @marcuscotephoto on twitter.

On April 2nd, 2018 at 20:30 UTC a Falcon 9 took off from Launch complex 40 at Cape Canaveral AFB. Aboard was a refurbished Dragon capsule with CRS-14, a resupply for the ISS. This was the 14th of up to 20 CRS missions contracted with NASA, with new Crew Dragon variants soon to be used. The capsule safely reached the ISS and was docked 20 minutes earlier than planned. The cost of the mission was reported to be around $2 billion, and comes under a contract between NASA and SpaceX.

Reused Dragon Capsule on CRS-14
The CRS-14 just before launch, carrying a reused Dragon Capsule for CRS-14. Image from @marcuscotephoto on Twitter.

The Dragon capsule carried 2,630kg  of cargo to the International Space Station, including supplies and research equipment. it has 1070 kg of science equipment, 344 kg of supplies for the crew, 148 kg of vehicle hardware, 49 kg of advanced computer equipment and 99 kg of spacewalking gear. Aboard there are a number of experiments, such as a new satellite designed to test methods of removing space debris. There are also frozen sperm cell samples, a selection of polymers and other materials, all experiments to test what happens to different items when exposed to space and microgravity.

CRS-14 launch
Launch of F9-53 on April 2nd 2018, carrying CRS-14 using a reused rocket and capsule. Image from SpaceX Flickr.

Designated F9-53, the Falcon 9 used booster B1039.2, which previously boosted the CRS-12 mission in August 2017, where it returned to landing zone 1. As is customary, the first stage was left “sooty” from it’s first flight. It powered for 2 minutes and 41 seconds before falling back to earth. For the sixth time in the last 7 Falcon 9 launches, the first stage was purposefully expended, even though it carried landing legs and steering grid fins. As with other expenatures, the rocket went through the re-entry landing sequence, but just didn’t have anything to land on and ended up in the sea. It was the 11th flight of a previously flown Falcon 9 first stage, five of which have been purposefully expended during the second flight, only 3 first stages remain that can be reflown.

A Sooty Falcon 9
The Falcon 9 was left sooty after its first flight which has now become the norm. Image from @marcuscotephoto on twitter.

The second stage completed its burn at 9 minutes and 11 seconds after takeoff, to insert Dragon into a Low Earth Orbit inclined 51.6 degrees to the equator. The Dragon 10.2 is a refurbished spacecraft capsule that first flew during the CRS-8 mission in April 2016. CRS-14 was the third launch of a previously flown Dragon capsule. This was also the first time that both the Dragon capsule and the Falcon 9 were refurbished versions on the same rocket. The docking process was carried out for around 20 minutes, and at 10:40 UTC Kanai detached the lab’s robotic arm to hook the free-flying Dragon capsule. At around 12:00 UTC Houston and Canada took control of the robotic arm and maneuvered it to the Harmony capsule of the ISS. It will be unpacked in a very slow process over a number of months.

Falcon 9 CRS-14
A falcon 9 lifting off from Cape Canaveral AFB Launch Complex 40. Image from SpaceX Flickr.
CRS-14 vapour streams
You can see the vapour streams coming off the falcon 9 as it sends its cargo towards the ISS. Image from SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

SpaceX Launches NEXT 10 Iridium Satellites For a Fifth Time

Iridium-5 Launch 4
The Falcon 9 F9-52 launching with the Iridium NEXT-5 satellites aboard. Image from SpaceX Flickr.

At 14:13 UTC on March 30th 2018, SpaceX launched a Falcon 9 from foggy Vandenberg Air Force Base. Although designated F9-52 this was the 51st Falcon 9 launch. Using a v1.2 variant booster, the rocket delivered 10 Iridium NEXT satellites into orbit. This was the fifth of eight planned Iridium NEXT missions.

Iridium-5 Launch 2
The Falcon 9 lifting off from Vandenberg AFB california. After the fog had lifted. Image from SpaceX Flickr.

 

From Vandenberg AFB Space Launch Complex 4 East, the first stage of the rocket lasted 2 minutes 34 seconds, separating a few seconds after. The second engine fired for 6 minutes 23 seconds. This part of the webcast was purposefully cut short due to a NOAA remote sensing licensing requirements. This is an issue with SpaceX not having the right licence to broadcast images from certain parts of space. This burn placed the rocket in a roughly 180 x 625 km parking orbit. The Thales Alenia Space satellite then deployed an hour after launch, after a second brief 11 second burn. This put the satellites into a 625km x 86.6 deg orbit.

Iridium-5 Long Exposure
A 53 second long exposure of Falcon 9 F9-52 launching from Vandenberg AFB. Image from SpaceX Flickr.

The rocket used another “Fairing 2.0”, which is slightly larger than usual, but equipped with recovery systems. These systems include thrusters, a guidance system, and a parafoil. The ship, named Mr Steven has a large net to capture the halves of the fairing. Again, the ship failed to catch one of the fairings, due to a parachute system issue. In a tweet by Elon Musk, it was reported that the GPS guided parafoil twisted so the fairing impacted the water at high speed. He also said that SpaceX are doing helicopter drop tests to fix the issue.

Iridium-5 launch 3
The Falcon 9 launching, with a view of the surrounding buildings and fuel tanks. Image from SpaceX Flickr.

Five of the six previously used Falcon 9 vehicles have been fully expended, this was the tenth flight of a previously-flown Falcon 9 first stage. Four of these ten have been purposely expended during their second flight. The first stage (B1041.2) was previously flown during the Iridium NEXT 3 launch on October 9th, 2017. It performed the 2 minute 34 second boost, and performed what SpaceX call a “simulated landing” into the ocean. SpaceX appear to be only launching a reused stages for one reflight, with the soon to launch “block 5” likely to be reused multiple times. Currently the company only have 4 first stages that might be flown, with one allocated for the upcoming CRS-14 dragon resupply mission.

Iridium-5 mission 1
The Falcon 9 F9-52 launching with the Iridium NEXT-5 satellites aboard. Image from SpaceX Flickr.

Explorer 1 and the Van Allen Story

On February 1st, 1958 at 03:48 UTC (January 31st at 22:48 EST), the first Juno booster launched Explorer 1 into Low Earth Orbit. It was the first satellite to be successfully launched by the United States, and the third ever, after Sputnik 1 and 2 in 1957. Launched from the Army Ballistic Missile Agency’s (ABMA) Cape Canaveral Missile Annex in Florida, now known as Launch Complex 26. The launch played a pivotal part in the discovery of the Van Allen Belt, Explorer 1 was the start of the Explorer series, a set of over 80 scientific satellites. Although sometimes looked over in the history of space, it guided the US space program to what it eventually became.

William Hayward Pickering, James Van Allen, and Wernher von Braun display a full-scale model of Explorer 1 at a crowded news conference in Washington, DC after confirmation the satellite was in orbit.

In 1954 The US Navy and US Army had a joint project known as Project Orbiter, aiming to get a satellite into orbit during 1957. It was going to be launched on a Redstone missile, but the Eisenhower administration rejected the idea in 1955 in favour of the Navy’s project Vanguard. Vanguard was an attempt to use a more civilian styled booster, rather than repurposed missiles. It failed fairly spectacularly in 1957 when the Vanguard TV3 exploded on the launchpad on live TV, less than a month after the launch of Sputnik 2. This deepened American public dismay at the space race. This lead to the army getting a shot at being the first american object in space.

The launch
Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958.

In somewhat of a mad dash to get Explorer 1 ready, the Army Ballistic Missile Agency had been creating reentry vehicles for ballistic missiles, but kept up hope of getting something into orbit. At the same time Physicist James Van Allen of Iowa State University, was making the primary scientific instrument payload for the mission. As well this, JPL director William H. Pickering was providing the satellite itself. Along with Wernher Von Braun, who had the skills to create the launch system. After the Vanguard failure, the JPL-ABMA group was given permission to use a Jupiter-C reentry test vehicle (renamed Juno) and adapt it to launch the satellite. The Jupiter IRBM reentry nose cone had already been flight tested, speeding up the process. It took the team a total of 84 days to modify the rocket and build Explorer 1.

Preparing the explorer 1
Explorer 1 is mated to its booster at LC-26

The satellite itself, designed and built by graduate students at California Institute of Technology’s JPL under the direction of William H. Pickering was the second satellite to carry a mission payload (Sputnik 2 being the first). Shaped much like a rocket itself, it only weighed 13.37kg (30.8lb) of which 8.3kg (18.3lb) was the instrumentation. The instrumentation sat at the front of the satellite, with the rear being a small rocket motor acting as the fourth stage, this section didn’t detach. The data was transmitted to the ground by two antennas of differing types. A 60 milliwatt transmitter fed dipole antenna with two fiberglass slot antennas in the body of the satellite, operating at 108.3MHz, and four flexible whips acting as a turnstile antenna, fed by a 10 milliwatt transmitter operating at 108.00MHz.

Explorer 1 parts
A diagram showing some of the main parts of the Explorer 1 satellite

As there was a limited timeframe, with limited space available, and a requirement for low weight, the instrumentation was designed to be simple, and highly reliable. An Iowa Cosmic Ray instrument was used. It used germanium and silicon transistors in the electronics. 29 transistors were used in the Explorer 1 payload instrumentation, with others being used in the Army’s micrometeorite amplifier.  The power was provided by mercury chemical batteries, what weighed roughly 40% of the total payload weight. The outside of the instrumentation section was sandblasted stainless steel  with white and black stripes. There were many potential colour schemes, which is why there are articles models and photographs showing different configurations. The final scheme was decided by studies of shadow-sunlight intervals based on firing time, trajectory, orbit and inclination. The stripes are often also seen on many of the early Wernher Von Braun Rockets.

NASM flight spare
The flight ready spare of the Explorer 1, now shown at the National Air and Space Museum.

The instrument was meant to have a tape recorder on board, but was not modeled in time to be put onto the spacecraft. This meant that all the data received was real-time and from the on board antennas. Plus as there were no downrange tracking stations, they could only pick up signals while the satellite was over them. This meant that they could not get a recording from the entire earth. It also meant that when the rocket went up, and dipped over the horizon, they had no idea whether it got into orbit. Half an hour after the launch Albert Hibbs, Explorers System designer from JPL, who was responsible for orbit calculations walked into the room and declared there was a 95% chance the satellite was in orbit. In response, the Major snapped: “Don’t give me any of this probability crap, Hibbs. Is the thing up there or not?”.

Explorer 1 Mission Badge
The official JPL mission pac=tch for the Explorer 1 mission.

The instrument was the baby of one of Van Allens graduate students, George Ludwig. When he heard the payload was going into the Explorer 1 (and not the Vanguard) he packed up his family and set off for JPL to work with the engineers there. He has a good oral history section on this link, talking about designing some of the first electronics in space. He was there watching the rocket launch and waiting for results. From the Navy’s Vanguard Microlock receiving station they watched the telemetry that reported the health of the cosmic-ray package. The first 300 seconds were very hopeful, with a quick rise in counting rates followed by a drop to a constant 10-20  counts per second, as expected. The calculations told them when they should hear from the satellite again, but 12 minutes after the expected time, nothing showed up but eventually, after pure silence, Explorer 1 finally reported home.

The Van Allen Belt
This diagram showcases the Van Allen belts, which were first detected by instruments aboard Explorer 1 and Explorer 3. The Van Allen belts were the first major scientific discovery of the space age.

Once in orbit, Explorer 1 transmitted data for 105 days. The satellite was reported to be successful in its first month of operation. From the scientist point of view, the lack of data meant the results were difficult to conclude. The data was also different to the expectations, it was recording less meteoric dust than expected and varying amounts of cosmic radiation, and sometimes silent above 600 miles. This was figured out on Explorer 3 when they realised the counters were being saturated by too much radiation. Leading to the discovery of the Van Allen Radiation Belt. Although they described the belt as “death lurking 70 miles up” it actually deflects high energy particles away from earth, meaning life can be sustained on earth. The satellite batteries powered the high-powered transmitter for 31 days, and after 105 days it sent it’s last transmission on May 23rd 1958. It still remained in orbit for 12 years, reentering the atmosphere over the pacific ocean on March 31st after 58,000 orbits.

When Planes Need an Eye Test

Naval Outlying Field Webster
The photo resolution marker at Naval Outlying Field Webster, From Google Maps

A few years ago, The Center for Land Use Interpretation (CLUI) reported on the dozens of Photo calibration targets found in the USA. They are odd looking two dimensional targets with lots of lines on the of various sizes, used as part of the development of aerial photography. Mostly built in the 1950’s and 60’s as part of the US effort of the cold war.

Shaw Air Force Base
The photo resolution marker at Shaw Air Force Base. From Google Maps

At this point, just after the second world war, there was a huge push to get better information about the enemy. The military needed better aerial recconasance. This very problem lead to the development of the U-2 and the SR-71. As part of this, there needed to be methods of testing these planes with the big camera systems attached to them. This was before the development of digital photography, so resolution is much more difficult to test.

The USAF test target
The 1951 USAF test target from wikipedia, they can still be bought.
Fort Huachuca
The photo resolution marker at Fort Huachuca. From Google Maps

This is where the photo resolution markers came in. Much like an optometrist uses an eye chart, military aerial cameras used these giant markers. Defined in milspec MIL-STD-150A, they are generally 78ft x 53ft concrete or asphalt rectangles, with heavy black and white paint. The bars on it are sometimes called a tri-bar array, but they can come in all forms, such as white circles, squares, and checkered patterns.

Beaufort Marine Corps Base
The photo resolution marker at Beaufort Marine Corps Base. From Google Maps

The largest concentration of resolution targets is in the Mojave desert, around Edwards Air Force Base. This is the place most new planes were tested during this time, with the U-S, SR-71 and X-15 being just some of the planes tested there. There are a set of 15 targets over 20 miles, known as photo resolution road. There are also plenty of other resolution targets at aerial reconnaissance bases across the US, such as Travis AFB, Beaufort Marine Corps Base and Shaw Air Force Base.

Elgin Air Force Base
The photo resolution marker at Elgin Air Force Base. From Google Maps

Arianespace Launches a Successful Soyuz

VS18 liftoff
VS18 taking off from the Soyuz Launch Complex (ELS) near Sinnamary.

At 17:10 UTC on the 9th of March 2018, Arianespace launched its second rocket of the year from Guiana Space Center at Kourou. Designated VS18, the Soyuz rocket launched four O3b Satellites into orbit more than 3 years after the last O3b launch. Controlled by a Russian ground crew from the Soyuz Launch Complex (ELS) near Sinnamary, there was a 33 minute delay to the start because of bad weather. The Soyuz used was a Soyuz 2-1b/Fregat placing the satellite in Medium Earth Orbit (MEO).

The VS18 launch from Instagram
The VS18 launch from the Instagram of Arianespace.

A somewhat complex launch, the first ascent lasted 9 minutes and 23 seconds placing the launcher in a sub orbital trajectory. After separation the Fregat performed a 4 minute burn to reach 160 x 205 km x 5.16 deg parking orbit. Coasting for 8 minutes, the Fregat performed its second burn for 8 minutes and 36 seconds to enter  a 190 x 7,869 km x 3.88 deg transfer orbit. Then after a coast of 1 hour and 21 minutes to the apogee, the Fregat fired for its third and final time for 5 minutes and 6 seconds, to enter its 7,830 km x 0.04 deg insertion orbit.

Poster of VS18 launch
Poster advertising the VS18 launch from the Arianespace website.

After the third burn, the satellites were release two at a time, with opposite satellites released at the same time. The first were released 2 hours into launch, and the second set 22 minutes later after a short firing of the Altitude Control System. The rocket then performed 2 more burns to lower its orbit to 200 km below the O3b release point. This was a disposable orbit, intended so that it will not interfere with working satellites.

The four 700kg satellites
The four 700kg satellites being lowered being loaded into the fairing, before the launch. Image from Arianespace website.
The O3b Satellites being prepared to be transported
One of the O3b Satellites being prepared to be transported to the launch site.

The Ka band satellites are the fourth set of O3b to be sent up, making the total constellation 16. Arianespace intend to launch the next set of four in 2019. “The new Ka-band satellites will join the existing O3b constellation to deliver high-speed connectivity to people and businesses in the growing mobility, fixed data and government markets,” Arianespace officials said in a statement. It was reported that the launch was a success, and the Luxembourg based satellite operator SES Networks now have control of the O3b’s.

The fairing of VS18 ready to launch
The fairing of VS18, ready to be attached to the Soyuz rocket, picture from Arianespace website.

The second launch of the year, Arianespace delayed the launch from the original March 6th launch date. This was postponed to conduct extra checks, likely inspired by the partial failure of the Ariane V earlier this year. On January 25th the company lost contact with the upper stage of the rocket. The 3 satellites on board did reach orbit despite the anomaly, but Arianespace have been quiet on the condition of them.

Launch of VS18 with four Ob3
Launch of VS18 with four Ob3 satellites on board. Image from Arianespace website.

How Going To The Moon Kick-started the Silicon Age

In the late 1950’s, there were three people who were at the epicenter of a huge breakthrough in the world of electronics, the invention of the Integrated Circuit (IC). Jack Kilby of Texas Instruments, Kurt Lehovec of Sprague Electric Company, and Robert Noyce of Fairchild Semiconductor. In August 1959, Fairchild Semiconductor Director of R&D, Robert Noyce asked Jay Last to begin development on the first Integrated Circuit. They developed a flip-flop with four transistors and five resistors using a modified Direct Coupled Transistor Logic. Named the type “F” Flip-Flop, the die was etched to fit into a round TO-18 packaged, previously used for transistors. Under the name Micrologic, the “F” type was announced to the public in March 1961 via a press conference in New York and a photograph in LIFE magazine. Then in October, 5 new circuits were released, the type “G” gate function, a half adder, and a half shift register.

The Type F flip flop
Junction-isolated version of the type “F” flip-flop. The die were etched to fit into a round TO-18 transistor package
Type F life image
Physically-isolated Micrologic flip-flop compared to a dime from LIFE magazine March 10, 1961

These first few integrated circuits were relatively slow, and only replaced a handful of components, while being sold for many times the price of a discrete transistor. The only applications that could afford the high prices were Aerospace and Military systems. The low power consumption and small size outweighed the price drawbacks, and allowed for new and more complex designs. In 1961, Jack Kilby’s colleague Harvey Craygon built a “molecular electronic computer” as a demonstration for the US Air Force to show that 587 Texas Instruments IC’s could replace 8,500 discrete components (like transistors and resistors) that performed the same function. In 1961, the most significant use of Fairchild Micrologic devices were in the Apollo Guidance Computer (AGC). It was designed by MIT and used 4,000 type “G” three input NOR gates. Over the Apollo project, over 200,000 units were purchased by NASA. The very early versions were $1000 each ($8000 today) but over the years prices fell to $20-$30 each. The AGC was the largest single user of IC’s through 1965.

apollo guidance computer logic module
Apollo logic module assembled by Raytheon to be used in the AGC
Type G micrologic
Philco Ford also produced the Fairchild Type ‘G’ Micrologic gate for the Apollo Guidance Computer – this is the flat pack verison

Note that although Fairchild designed and owned the type “G” device, they were mostly made by Raytheon and Philco Ford under licence from Fairchild. Over this time many semiconductor manufacturers such as Texas Instruments, Raytheon and Philco Ford were also making large scale silicon production for other military equipment. These included the LGM-30 Minuteman ballistic missiles, and a series of chips for space satellites. This major investment from the government and the military kick started the development of the increasingly complex semiconductor, and eventually forced the prices low enough for non military applications. The processes improved and by the end of the Apollo program, hundreds of transistors could be fitted into an IC, and more complex circuits were being made. Eventually the costs of adding more transistors to a circuit got extremely low, with the difficulty being the quality of manufacturing. It could be argued that NASA and the Pentagon paved the way for silicon device production as we know it today.

The 50th Flight of the Falcon 9

Awe inspiring Falcon 9 Photo
A truly awe inspiring photo Of the Falcon 9’s 50th flight. From the SpaceX Flickr.

At 05:33 UTC on March 6th 2018 SpaceX launched it’s 50th Falcon 9 mission. The version 1.2 Falcon 9, with a brand new “Block 4” variant booster B1044, lifted off from Cape Canaveral Space Launch Complex 40. On board, inside the type 1 fairing was Spain’s Hispasat 30W-6. Weighing in at 6,092kg, being the size of a bus and being launched into geosynchronous transfer orbit, it’s the biggest challenge that the Falcon 9 has come up against.

50th Falcon 9 Flight 1
50th Falcon 9 flight soars into the Florida night sky, Image by @marcuscotephoto on Twitter

The First stage if the Falcon 9 fired for about 2 minutes and 35 seconds before releasing and plummeting back towards the Atlantic ocean. The initial plan was top land the “type 4” first stage on the autonomous drone ship “Of Course I Still Love you” in the Atlantic. Landing legs and titanium steering grid fins were attached and went up with the rocket.  There was already speculation, due to the large payload and the orbit attempted, whether the Falcon 9 would have enough fuel left to attempt the reentry and landing procedure. Unfortunately it was not possible to find out whether the F9-51 mission would have made a landing because the autonomous drone ship was kept in port because of high sea conditions. The rocket still went through the entire reentry and landing procedure, as mentioned on the livestream, but ended up in the Atlantic.

Long exposure of Falcon 9
An awesome long exposure shot of the Falcon 9 Taking off from SLC-40. From @marcuscotephoto on Twitter

almost 9 minutes in, the second stage with the payload achieved a Low Earth Orbit, and “parked” until T+26 min 36s where they first crossed the equator. This second burn lasted 55 seconds to accelerate the ss/Loral-built satellite  into a Geosynchronous Transfer Orbit. The Hispasat 30W-6 will fire its four SPT-100 plasma thrusters to gradually raise itself to Geosynchronous Orbit positioned 30 degrees West (clue in the name). Hispasat 30W-6 is designed to provide broadband services in Europe and Northwest Africa.

The Hispasat 30W-6 launching
The Hispasat 30W-6 launching at night, from SLC-39. From SpaceX Flickr.
Timelapse of Falcon Launch
Timelapse of Falcon Launch from across the water, from SpaceX Flickr

This is the fourth all-expendable Falcon 9 launch in the past 5 years, and the first time a “type 4” stage has been expended on it’s first flight. Both of the stages of the F9-51 rocket were tested at SpaceX Rocket Test Facility in McGregor, TX during October/November 2017. They have been at Cape Canaveral since January 2018, and were stacked ,loaded with propellant and tested (first stage only) at the Cape at SLC 40 on February 20, 2018. The Launch was initially planned for February 25th, but was shelved by SpaceX to investigate payload fairing pressurisation issues.

Raw power of Falcon 9
An image showing the raw power of the Falcon 9, from SpaceX Flickr.

Why James Webb Was so Important

NASA Administrator James E. Webb
NASA Administrator James E. Webb. This was his official NASA photograph

There are not many people who know off the top of their head who James Webb is, even many lovers of space may not know who he was. Yet they are about to launch the James Webb Space Telescope into space to replace Hubble. James Webb wasn’t an engineer, or a physicist, or even really an academic; he was a lawyer and politician. He turned a small government research department into an organisation that had links to almost every state, and had control of 5% of the US federal budget. Webb’s NASA controlled the jobs of half a million workers across America, and he introduced new working practices and management techniques that are still used today.

If you were to go out and read the biographies of the astronauts, or histories of spaceflight, Webb doesn’t really come up. He was portrayed as just a bureaucrat in Washington, funnelling orders down the chain, living the politician life. In this new age of spaceflight, we see the Apollo years as some sort of poetic story, with NASA being the figurehead of the battle to win space against the evil russians. In 1961 though, America did not follow this narrative, nobody in America cared about space, least of all the brand new president, John F Kennedy. When he set up his first reshuffle of the cabinet they simply could not get anyone to run NASA, they asked 18 high level politicians, and everybody said no, space was a dead end job, and NASA was just a collection of squabbling mission centres. Eventually, JFK’s vice president, Lyndon B. Johnson suggested Jim Webb, a guy who had worked under the Roosevelt administration and had some experience with private businesses. When asked, by JFK personally, Webb agreed to run NASA, as long it was the way he wanted it. JFK, desperate for an administrator gladly agreed.

shaking hands with JFK
President Kennedy shakes hands with NASA Administrator James Webb

There had been heavy opposition to the idea of manned spaceflight. Up to this point, the head of the President’s Science Advisory Committee, Jerome Wiesner, had issued a critical report on project mercury. Kennedy, as a senator he had openly opposed the space program and wanted to terminate it. Kennedy put his vice president LBJ as the head of the National Aeronautics and Space Council because he had helped create NASA, but it was mainly to get him out of the way. Although Kennedy did try and reach out for international cooperation in space in his state of the union address in January 1961, he got nothing from Khrushchev. Kennedy was poised to dismantle the effort for space, purely because of the massive expense.

The space Council
Vice President Lyndon B. Johnson (seated, center) presides over a meeting of the National Aeronautics and Space Council.

He began his NASA administration on February 14th 1961. A month later on April 12th, Yuri Gagarin became the first man to orbit the earth. Reinforcing some fears that America was being left behind in a technological competition with the Soviet Union, America suddenly cared about space. Kennedy made a U-turn and space sped to the top of the list.  This lead to Kennedy making his famous speech on May 21st where he spoke those famous words “we will put a man on the moon before the decade is out”. Kennedy wanted to take lead in the space race. Suddenly, putting a man on the moon was the number one priority.

Kennedy Talking to Congress
MAy 1961, Kennedy proposes landing a man on the moon to congress. LBJ and Sam Rayburn sit behind him.

This meant that James Webb just got handed the opportunity to run the biggest single project the country had ever seen. Webb was told to go back to his engineers and figure out how much it will cost to get to the moon. His engineers came up with the number of $10 billion (a scary big number in the 1960’s), and sheepishly told Webb, expecting to be told to make cuts and slashes to the plan. Instead he told them to go higher, because he knew problems would come their way, and extra money will need to be spent, so they come back with the figure of $13 billion. Webb accepts the number, and goes to congress and tells them he needs $20 billion over the next 7 years. Jaws hit the floor, but he used this political knowledge to get a huge amount of leverage.

The key leverage he had was jobs, and he knew it. At its height, NASA employed half a million people in some form, that’s roughly the number of people living in Wyoming. The two biggest investments were in Cape Canaveral, FL and Houston, TX. The most controversial was the Manned Spaceflight Centre in Houston, donated by Rice University. Originally based in Langley Virginia, and named the Space Task Group, the senator didn’t care much for space. The entire operation was moved to Houston, LBJ’s home state. It was central, and had good universities surrounding it. There were many Texas based representatives in the space political landscapes at that time, such as Sam Rayburn, the speaker of the House of Representatives.

Johnson Space Centre
Manned Spaceflight Centre, Texas, one of the biggest employers in Texas for a long time. with over 3000 federal workers, and 100 buildings

One thing that Webb understood was what NASA needed to run. He implemented a very flat organisational structure, with very few middle managers. Webb was the very top, controlling Washington. He also had the head of NACA (precursor to NASA) Hugh L. Dryden as an associate director. He had overseen the development of the x-15, and understood the technical needs of Apollo. Also Robert Seamans, also an associate director, acted as the general manager of NASA, and oversaw the everyday running of the program. Using a team of people, each with their own particular strengths helped NASA, especially in the early growth years, much more so than any one of them could achieve on their own.

Webb in a Gemini Trainer
Webb in a Gemini Trainer

Part of what James Webb did, to the dislike of congress, was to invest in academia, specifically universities. $30 million dollars a year was put into the Universities Development Fund. A fund designed to help students get into engineering, and to develop talent, skills, and academics that could not only work for NASA, but help the science behind it. As it was taken from a fund that congress had no control over, the money continued to help 7000-8000 students a year get through university at a time where NASA needed engineers. Webb believed that NASA was more than just the one shot to the moon, and frequently fought with the presidents on that fact. He wanted NASA, and space exploration to benefit science, engineering and even society. He believed that this project could fix other problems not even related to space, such as poverty and disease. The management style of NASA, and the way these big projects were handled showed the impossible could be achieved. He frequently lectured on this subject, and universities became an important part of NASA.

Launch_Complex_34_Tour
Webb, Vice President Lyndon Johnson, Kurt Debus, and President John F. Kennedy receive a briefing on Saturn I launch operations

There was huge pressure from washington to spend all of NASA’s budget purely on the Apollo moonshot. Webb was instrumental in making sure that NASA and spaceflight was more than that. be made sure other projects like the Mariner and Pioneer space programs happened, and that JPL still functioned even with a terrible track record at the time. At the time, the academic community worked with NASA, in large part because of the importance Webb put on furthering science. Webb would frequently lecture at universities, and teach about the management styles that made NASA was. Unfortunately, some in Washington didn’t care for the extra spending, especially the states that did not have a mission centre or any of the major manufacturing plants located there. So when the Apollo 1 fire happened, there were a small group that were willing to use it as a way to make changes.

Closeup of James E. Webb, National Aeronautics and space administration

The Apollo 1 fire was a very unfortunate accident, and a national tragedy. For some, it highlighted some major problems with the Apollo program and how it had been run by the major contractor North American Aviation. Committees were set up, and Webb suddenly went from running NASA to trying to defend it. During the inquests, NASA still ran, it continued to fix problems and aim for the moon. This was because James Webb was there defending it. Left to just take the heat, some believe (me included) NASA’s funding would have been significantly cut, and we may have never got to the moon. Webb stood up in Washington and fought hard for the continuation of the project, defending the decisions that his team had made. At the end of it, he had used up most of his political sway, and called in so many favours that NASA was safe for the time being, and that Apollo was possible.

Webb presents NASA’s Group Achievement Award to Kennedy Space Center Director Kurt H. Debus, while Wernher von Braun (center) looks on

At this point, Johnson had decided not to run for re-election, Webb felt that he should step down to allow Nixon to choose his own administrator. On October 7, 1968 he stepped down from office. To put that into perspective, Apollo 11 landed on the moon July 20th, 1969, barely a year later. Webb went on to be a part of many advisory boards and served as regent for the Smithsonian institute. He died in 1992, and was buried in Arlington National cemetery.

This post was inspired by reading the book: The Man Who Ran The Moon by Piers Bizony. For anyone interested in the subject of how Webb actually made his dealings, and a much more detailed account of how NASA became what it is, I recommend this book. He also did a Lecture on Webb that I found on YouTube where he tells the story really well.

 

Luna 1 – The Satellite That Missed the Moon

On January 2nd 1959, at 16:41:21 UTC (22.41 local time) Luna 1 was launched from the Scientific-Research Test-Range No. 5 at Tyuratam, Kazakhstan (now named the Baikonur Cosmodrome). Launched aboard Vostok-L 8K72 three-stage launch vehicle, it was the fourth attempt at sending a payload at the moon by the Soviets. The first 3 were:

A museum replica of luna 1
A museum replica of luna 1

E-1 No.1 – or Luna 1958A by NASA. Launched 23 September 1958, 07:40. Booster disintegrated 92 seconds into flight due to Excessive vibration. Was the maiden flight of Luna 8K72 Rocket.

E-1 No.2 – or Luna 1958B by NASA. Launched 11 October 1958, 21:42. Booster disintegrated 104 seconds into flight due to Excessive vibration.

E-1 No.3 – or Luna 1958C by NASA. Launched 4 December 1958, 18:18. 245 seconds into flight, the core stage turboprops lost hydrogen peroxide lubricant, meaning it lost power and impacted downrange.

E-1 No.4 was only a partial failure, and therefore became known as Luna 1. Intended to impact the surface of the moon. Due to an error in timing the upper (third) stage burn time caused a near miss. After 34 hours of flight, at 3.45 UTC on january 4th the probe passed within 5,995km (3,725mi) of the lunar surface, which is about 1 and a half times the moon’s diameter. It was 320,000km from earth, travelling at 2.45km per second. It became the first man-made object to reach the escape velocity of earth. Then after missing the moon it was the first spacecraft to leave geocentric orbit and enter heliocentric orbit.

A replica of the luna 1 attached to the cone
A replica of the luna 1 attached to the cone

The Luna 1 module was hermetically sealed sphere weighing 361.3kg (795.9lb) with 5 antennae extended from one hemisphere; four whip antennas and one rigid antenna. The spacecraft contained a 19.993 MHz system which transmitted signals 50.9s long, a 183.6MHz transmitter for tracking purposes, and a 70.2MHz transmitter. The batteries on board were mercury-oxide and silver-zinc accumulators. Five sets of scientific equipment were externally mounted to the unit to study the journey including a geiger counter, scintillation counter, and micrometeorite detector, along with a Sodium experiment. The device on the end of the center rod protruding out the back is a magnetometer to measure the moon’s magnetic field.

The primary objectives of the mission were to:

  • Measure the temperature and pressure inside the vehicle.
  • Study the gas components of interplanetary matter and corpuscular radiation of the sun.
  • Measure the magnetic fields of the earth and the moon.
  • Study meteoric particles in space.
  • Study the distribution of heavy nuclear nuclei in primary cosmic radiation.
  • Study other properties of cosmic rays.
    Another schematic of Luna 1
A schematic of the Luna 1
A schematic of the Luna 1, unfortunately with russian annotations

at 00:56:20 UTC on january 3rd, 119,500km (74,300mi) from earth, the spacecraft released 1kg (2.2lb) of sodium gas. This formed a cloud behind it to serve as an artificial comet. The glowing orange trail of gas was visible over the ocean with the brightness of a sixth-magnitude star.  Mstislav Gnevyshev at the Mountain Station of the Main Astronomical Observatory of the Academy of Sciences of the USSR near Kislovodsk took a photograph. This was designed as an experiment on the behaviour of gas in outer space, as well as functioning as a navigational aid helping ground control track the mission.

gas cloud of sulphur
Gas cloud photographed by Mstislav Gnevyshev at the Mountain Station of the Main Astronomical Observatory of the Academy of Sciences of the USSR near Kislovodsk

Luna 1 was made of an aluminium-magnesium alloy, sealed with a special rubber. To protect the satellite, there was a cone to take the heat when passing through the dense layers of the atmosphere. When safely out of the atmosphere the cone was discarded, and the antennae unfold. On the same half as the antennas were two proton traps to find the gas components of interplanetary matter, and two piezoelectric pickups for the study of meteoric particles. The inside of the unit was filled with gas at 1.3 atmospheres, to ensure high pressurisation inside. Through the design, the high pressure allows for an air circulation within the unit. This circulation drew heat off equipment and instruments, transferring it to the shell, that then serves as a radiator.

The nose cone
A replica of the nose cone in an exhibition in 1969
How it fitted
A diagram showing how the nose and luna probe fitted

 

The Vostok-L 8K72 was a modified R-7 Semyorka intercontinental ballistic missile.The R-7 rocket was designed by Sergei Pavlovich Korolev, known more commonly as The Chief Designer. The 8K72 version consisted of two core stages with four external boosters. The first stage and each of the boosters were powered by a four-nozzle RD-107 rocket engine burning kerosene and liquid oxygen. Total thrust was approximately 1,100,775 pounds (4,896.49 kilonewtons). The second stage used a RD-0105 engine, producing 11,015 pounds of thrust (48.997 kilonewtons). The Luna 1 was propelled by a third stage which remained attached during the translunar coast phase of flight.

Vostok on Takeoff
Vostok on takeoff with the luna 1 on board

After Luna 1 passed the moon and continued on towards heliocentric orbit, it only had a certain amount of battery power left. Because it was meant to collide with the moon it had no need for recharging. On january 5th at approximately 07:00 the radio transmitter ceased to operate at a distance of 600,000km from earth. It is still in an orbit around the sun, somewhere between mars and earth. It completes one rotation in roughly 450 days. for those who understand the terms associated with orbital mechanics here are the numbers:

  • Semi major Axis: 1.146AU
  • Eccentricity: 0.14767
  • Perihelion: 0.9766AU
  • Apohelion: 1.315AU
  • inclination: 0.01 degrees
Luna1 Trajectory
Luna 1 Trajectory

Part of the plan was to hit the moon, unfortunately it didn’t achieve that. Part of the reason was to plant 2 Soviet pennants onto the moon. They were highly durable, made from titanium with thermoresistant polysiloxane enamals, that could reportedly survive an impact with venus. Usually a few are minted to give to VIP’s and top scientists. For them, it’s similar to planting a flag. one of the pennants on this flight was a thin metal strip with the inscription “Union of Soviet Socialist Republics” on one side and the coat of arms of the Soviet Union and the inscription “January 1959 January” on the other. The other pennant was spherical, symbolising the moon, each face has the inscription “USSR, January 1959,” on one side and the coat of arms of the Soviet Union and the inscription “USSR” on the other.

luna 1 pennant 1

Luna 1 pennant 2
The pennants on the Luna 1, that are still inside the satellite to this day.