Arianespace Launches a Successful Soyuz

VS18 liftoff
VS18 taking off from the Soyuz Launch Complex (ELS) near Sinnamary.

At 17:10 UTC on the 9th of March 2018, Arianespace launched its second rocket of the year from Guiana Space Center at Kourou. Designated VS18, the Soyuz rocket launched four O3b Satellites into orbit more than 3 years after the last O3b launch. Controlled by a Russian ground crew from the Soyuz Launch Complex (ELS) near Sinnamary, there was a 33 minute delay to the start because of bad weather. The Soyuz used was a Soyuz 2-1b/Fregat placing the satellite in Medium Earth Orbit (MEO).

The VS18 launch from Instagram
The VS18 launch from the Instagram of Arianespace.

A somewhat complex launch, the first ascent lasted 9 minutes and 23 seconds placing the launcher in a sub orbital trajectory. After separation the Fregat performed a 4 minute burn to reach 160 x 205 km x 5.16 deg parking orbit. Coasting for 8 minutes, the Fregat performed its second burn for 8 minutes and 36 seconds to enter  a 190 x 7,869 km x 3.88 deg transfer orbit. Then after a coast of 1 hour and 21 minutes to the apogee, the Fregat fired for its third and final time for 5 minutes and 6 seconds, to enter its 7,830 km x 0.04 deg insertion orbit.

Poster of VS18 launch
Poster advertising the VS18 launch from the Arianespace website.

After the third burn, the satellites were release two at a time, with opposite satellites released at the same time. The first were released 2 hours into launch, and the second set 22 minutes later after a short firing of the Altitude Control System. The rocket then performed 2 more burns to lower its orbit to 200 km below the O3b release point. This was a disposable orbit, intended so that it will not interfere with working satellites.

The four 700kg satellites
The four 700kg satellites being lowered being loaded into the fairing, before the launch. Image from Arianespace website.
The O3b Satellites being prepared to be transported
One of the O3b Satellites being prepared to be transported to the launch site.

The Ka band satellites are the fourth set of O3b to be sent up, making the total constellation 16. Arianespace intend to launch the next set of four in 2019. “The new Ka-band satellites will join the existing O3b constellation to deliver high-speed connectivity to people and businesses in the growing mobility, fixed data and government markets,” Arianespace officials said in a statement. It was reported that the launch was a success, and the Luxembourg based satellite operator SES Networks now have control of the O3b’s.

The fairing of VS18 ready to launch
The fairing of VS18, ready to be attached to the Soyuz rocket, picture from Arianespace website.

The second launch of the year, Arianespace delayed the launch from the original March 6th launch date. This was postponed to conduct extra checks, likely inspired by the partial failure of the Ariane V earlier this year. On January 25th the company lost contact with the upper stage of the rocket. The 3 satellites on board did reach orbit despite the anomaly, but Arianespace have been quiet on the condition of them.

Launch of VS18 with four Ob3
Launch of VS18 with four Ob3 satellites on board. Image from Arianespace website.

The Ups And Downs Of The Falcon Heavy Launch

At 20:45 UTC on the 6th of February 2018 the long awaited Falcon Heavy soared up into the sky. Watching the livestream, there was something slightly different. Instead of the usual single commentator, they had four. Behind them, hundreds of SpaceX employees cheering all the way through the launch, with bigger cheers at each milestone. It was definitely long anticipated, and I even felt the impact at university. Students were going round making sure people knew that tonight was the night that the Falcon Heavy was launching. The stream didn’t disappoint space lovers, and I highly recommend watching it on the SpaceX Youtube page.

So what actually happened,  why was this flight so important? The demo mission was the  first firing of the full Falcon Heavy configuration. Although all the rockets had been previously fired and tested at SpaceX’s rocket test facility in McGregor, TX. Consisting of “Block 2” variant side boosters (B1023.2 and B1025.2) and a “Block 3” variant core stage (B1033.1). Both the boosters had been flown before and refurbished in Hawthorne, CA. B1023.2 was flown May 27th, 2016 for Thaicom 8 launch, landing on SpaceX’s autonomous drone ship “Of Course I Still Love You”. B1025.2 flew on July 18th, 2016 for the CRS-9 mission, landing at Landing Zone (now landing zone 1). It is noted that future Falcon Heavies will likely use the “Block 5” variant. Elon Musk Claims that the development of the Falcon Heavy project has cost $500 million to get to this stage.

Falcon Heavy Before Launch
The Falcon Heavy the night before launch. From @SpaceX on Twitter

At 20:45 UTC, the Falcon Heavy lifted off of pad 39A at Kennedy Space Centre. It weighed roughly 1,400 tonnes and was 70m tall. with 2,128 pounds of thrust, the triple barreled rocket lifted off the pad with its 27 Merlin 1D engines (9 on each booster). At the time of writing it is the largest and most powerful operational rocket in use today by a factor of 2. Elon Musk gave the launch a 50-50 chance of success, but it continued through almost all of the milestones. Through Max-Q, release of boosters, and release of the main engine. The second stage performed 3 burns during the 6 hour mission to accelerate the cargo to into a heliocentric orbit. The orbit ranges from earth orbit to beyond mars (0.99 x 1.71AU). The concept of this burn was to demonstrate long coasts between the second and third burns. This ability is needed for some DoD EELV Heavy class missions, a market that SpaceX wants to compete in.

Falcon Heavy Launching
Falcon Heavy launching from pad 39A at Cape Canaveral Air Force Base.
Intended Orbit
Intended orbit of the Falcon Heavy payload, heliocentric. From Elon Musk’s Twitter.

Usually on these types of initial flights they put some sort of simulated weight in the fairing (the bit that holds the payload on top) usually a block of concrete. Elon Musk being Elon saw this as a marketing opportunity, and instead used his personal 2008 cherry red Roadster, weighing in at 1,250kg. In the driver’s seat sat a full scale human mannequin named “Starman”, wearing a SpaceX branded pressure spacesuit. The person who timed the release of the fairing showing the Tesla against the backdrop of the earth, to the music of “Life of Mars” by David Bowie, deserves a medal. Although perfectly timed, it is sometimes incorrectly attributed as “Starman” by Bowie, which would make more sense when you think about it. On the dashboard of the car is the immortal words of “don’t panic”, a tribute to A Hitchhiker’s Guide to the Galaxy, that was a clever addition. There is a livestream of the first 5 hours of Starmans trip, at which time it probably lost signal, or ran out of battery. There has been mixed reviews of this stunt. Some call it art, whereas others call it “space littering”. Some commentators such as Burnie Burns on the Roosterteeth Podcast simply don’t like the use of space for marketing purposes. Scientists at Purdue University called it “the dirtiest man-made object ever to be sent to space” due to its use driving in Los Angeles.

Tesla Roadster in Orbit
Elon Musk’s Tesla Roadster with Starman sat in the driver’s seat.

For me personally the most impressive part of the entire video was near to the end. SpaceX have had some famous problems with the landing of their reusable rockets, but during this mission they planned to land all three. The best shot of the entire livestream was the two boosters coming down at the same time, with the Cape in shot. Both boosters opening their landing legs, and coming down to land on Landing Zone 1 and 2. It was a truly epic sight, and from an engineers point of view, very impressive. The second pad was installed for these Falcon Heavy missions, and the boosters worked just as planned. The core was a slightly different story. It attempted to land on the autonomous drone ship “Of Course I Still Love You”. It completed its boost-back and reentry burn, but for the three-engine landing burn, two engines failed to ignite. The core ended up in the Atlantic. Smoothly brushed over, this was not mentioned on the Livestream, and not until a few hours later on Twitter. Even so, the things that did land correctly were impressive.

FH Side Booster Landing
The impressive shot of the side boosters landing simultaneously on LZ1 and LZ2, at Cape Canaveral.

There has been a huge amount of excitement and skepticism about the Falcon Heavy. Some have heralded it the way Elon Musk wants to get to Mars, others just love the idea that the car will be out there for “billions of years”. Although very impressive, the Falcon heavy is really designed to be a beefier version of the Falcon 9, and will probably do the same job. SpaceX are aiming in the coming years to get more contracts from the Department of Defence, and aim to get more up into space at the same time. The Falcon Heavy is all about making it cheaper for big payloads to get to space. Although it has the capability to get to Mars, and carry people, Musk has said that there are bigger plans in the pipeline for those jobs. As for the car, according to chemist William Carroll, solar and cosmic radiation will break down most of the car within a year, leaving just the aluminium frame and maybe some glass that isn’t shattered by meteorites.

The Falcon Heavy Launching
The Falcon Heavy launching, taken from behind a SpaceX hangar near the launch site.

This is a big moment for SpaceX, and the space community, and shows that there are big things coming in the sector. There are big launches aimed from the big companies this year, and new rockets being unveiled in the near future. SpaceX may have just started a new space race. For all the excessive marketing that Elon Musk does, SpaceX have definitely got their marketing message right.

To find similar photos, and to buy reasonably priced prints of some of the above visit