What We Learnt From The Peter Beck AMA

Peter Beck is the CEO and founder of Rocket Lab, a US/New Zealand orbital launch provider who is trying to provide access to space for small satellites. On at 19:00 UTC on April 5th he participated in a Reddit AMA on /r/space, where he answered as many questions as he could about the Electron launch vehicle and the upcoming ‘it’s business time’ launch, as well as what the future of space access looks like. It was a good AMA, he answered lots of questions, and the full post can be found here. This post is to round up some of the most common and important questions he got asked for those interested.

Peter Beck by Electron
Peter Beck, president of Rocket Lab in front of the Electron launcher. Credit: Rocket Lab

The most questions came with reference to SpaceX, and the way their business model compares to Rocket Lab.

SpaceX didn’t see a market It’s known that the Falcon 1 was a similar size to the Electron and they quickly moved on from it. So people asked if SpaceX didn’t stay with it, why will it work for Rocket Lab?  Peter makes the point that SpaceX retired that rocket 10 years ago, and most of Rocket Labs customers didn’t even exist then. He mentioned that Electrons manifest is fully booked for the next 2 years for dedicated flights. He also doesn’t see a slowdown in demand anytime soon.

Reusability – On the SpaceX front, they have made big inroads to reusability and the Electron is not reusable, so many asked about plans to make a reusable version. The simple answer he gave was that reusability makes sense for medium lift vehicles like the falcon 9, but it doesn’t scale well to small vehicles. So it isn’t on the radar for them at the moment.

Electron Launch Vehicle
Rocket Lab’s first Electron rocket, seen here in a hangar at the company’s New Zealand launch site. Credit: Rocket Lab

Other Rocket Manufacturers – As there are many small rocket manufacturers popping up, and attempting to compete in this space, many wanted to know what the market is actually like for them. His comment was that not all of those manufacturers will make it, and they are currently the only dedicated small launcher that has actually made it to orbit. Others were quick to point out that other rockets of similar size do launch but nowhere near as frequently and do not have the same quality or launch frequency as the Electron.

Where else will they launch from – Currently they have a single launch site, but many wanted to know if they will branch out, to different pads of even different countries, maybe even pad-39A. He mentions that he wants to have many potential launch pads to serve many different inclinations, but Launch Complex 1 is a good start.

Going Bigger – There were lots of questions about making a bigger rocket, like an Electron Heavy. He made a point of saying they are currently only making one product really well. They have no plans to make bigger rockets, and they understand the market they are in. Rocket lab do not want to compete with SpaceX on these launches. He mentions that they can launch a huge amount of spacecraft to LEO, and going bigger only allows a 2% increase in market at the moment. That being said they will continue improving the rocket as they go along.

electron on the pad
The Electron launch vehicle waiting on the pad for takeoff, Credit: Rocket Lab

Using composites – As the LOX tank and other parts are made of carbon composites, there were questions about the difficulty surrounding the design and development of that. He talked about the several years developing and testing the composite tanks. The two main issues being microcracking and oxygen compatibility. They ended up with liner-less tanks with common bulkheads that have similar oxygen compatibility to aluminium but much lighter mass. All the composite manufacturing is in house. Some wanted to know how they manage to use such expensive processes, and he says that although carbon fibre is expensive, when done right you can use very little of it.

Why black – with most rockets out there being white, to help with the thermal efficiency, why did they go for black? Well the simple answer he gave was it looks better. Many engineers wanted to paint it, but the thermal experts made a special effort to make sure they could keep it black. Also, it does save some time/money/weight on paint.

It’s all about the money – The key question is, is it profitable, and when will they start making those profits? Well Peter states that they will see positive cash flow after their 5th flight. Each launch costs $4.9 million to each customer, and they get a dedicated launch, so no need to worry about rideshares where they have less control.

Electron Launch
Electron Rocket takes off from Rocket Lab Launch Complex 1 during the “Still Testing” mission. Credit: Rocket Lab

Adding to space junk – In the news recently, there has been lots of the junk that currently floats in space, so there were some questions on how the Electron tries to stop being just more rubbish. Peter talks about the Curie stage of the rocket that is designed to fix this issue. It puts it the second stage into an orbit that makes it deorbit quickly, and the kick stage can deorbit itself. Also most of the LEO payloads they will orbit will deorbit within 5-7 years.

Launch cadence – A few asked how often they are able to launch rockets, or at least the plans to do so. He mentioned that the current plan is to launch once a month for the next year, then once every two weeks, and then double down from there. The Launch complex 1 can support a launch every 72 hours, which is pretty impressive.

Job opportunities – As you would expect, many people asked how you get a job/internship at Rocket Lab. Peter gave a link to email a resume to, but mentioned that the bar is high, they are open to new people but they have to be passionate, and enjoy (and be good at) what they do. They are a small team trying to do big things! They care about what you do outside your formal education, what are you passionate about? what have you built, tested and broken?

Rocket testing
Rocket Lab testing its engines for the Electron launch vehicle. Credit: Rocket Lab

Some hardcore technical answers

  • Each propellant had a dedicated and independent pump system rather than a single electric motor.  That was due to wanting super accurate control over the oxygen fuel ratio and startup and shutdown transients.
  • Ignition is from an augmented spark igniter (a spark plug surrounded by a tube, what acts sort of like a blowtorch).
  • The engine is fully regeneratively cooled, 3D printed chamber.
  • The area ratios for the booster and vacuum nozzles are 14 and 100 respectively.
  • The steering and ullage on the upper stage is controlled by cold gas RCS and PMD.
  • The whole vehicle is non pyro, the decouplers are all pneumatic.