How the Moon’s Dust Could be Deadly

footprint on the moon
Very famous image of a footprint in the lunar soil, part of the 70mm Hasselblad image collection, you can see the dust and rocks that are classed as mature Regolith, Credit: NASA.

The space industry is changing, improving and looking at places to go. Although Mars is the big target for Elon Musk and SpaceX, revisiting the Moon is a big and real challenge that many are aiming for. Whether it is just getting people back there in a safer and cheaper way than Apollo or if it is companies wanting to design Moon bases, it is an active area of interest. Since the Moon landings over half a century ago, researchers have poured over the moon rocks, and images brought back from the mission. More recently though, researchers are looking at a slightly overlooked factor, lunar dust. They were a problem for the astronauts to landed there in the 60’s/70’s and they may pose a problem to future missions where they may spend weeks or months rather than just a few hours/days. The research below shows how the moon moon affects us when we are there, and how it could be very dangerous.

Harrison Schmitt collects samples
NASA astronaut Harrison Schmitt retrieving lunar samples using a scoop during the Apollo 17 mission in 1972. Credit: NASA.

At time of writing, twelve people have been known to walk on the Moon, all between 1968 and 1972. The longest any group spent on the Moon was the crew of Apollo 17 who spent just over three days there. Sleeping in the Lunar Exploration Module, the astronauts tended to collect lots of dust during the EVA’s (Extravehicular Activity). As the moon has a much lower magnetic field it gets blasted with much more radiation from the sun on the surface.  This electrostatically charges the dust particles making it much more likely to stick to the astronauts spacesuits. This linked with the lower gravity of the Moon means that the particles do not drift to the ground as fast like on Earth. Plus when the dust got into the Spacecraft it had no gravity on the trip home. All these factors meant that the astronauts inhaled lots of lunar dust during the mission.

Lunar dust particle
Fine like powder, but sharp like glass. An image of a lunar dust particle. Credit: NASA/JSC.

On earth, dust tends to be fairly round, eroded over time by wind and water. It is also not only rocks, but biological as well,  On the moon, the dust is just rocky and hasn’t been eroded over time as there is no wind or water. The particles are spikey, abrasive and nasty. All twelve of the people who landed on the moon suffered with what NASA astronaut Harrison Schmitt described as “lunar hay fever”. They had symptoms like sneezing, nasal congestion and often they took time to fade. Most people know that the astronauts describe the dust as smelling like burnt gunpowder, but don’t know that it made them quite ill. Even the astronauts themselves might not have known the true reasoning behind the illness. Part of the reason is that the lunar dust has silicate in it, often found on planetary bodies with volcanic activity. As well as making the astronauts ill, it was so abrasive that it ate away at layers in the spacesuit boots, and destroyed vacuum seals on sample containers.

Eugene Cernan Hay fever
NASA astronaut Eugene Cernan inside the lunar module, still on the moon after his second moonwalk of Apollo 17. With spacesuit covered in lunar dust he complained of hay fever like symptoms. Credit: NASA.

One study by Stony Brook University School of Medicine, NY looked into the toxicity and DNA damage as a result of exposure to Lunar dust. They attempted to mimic the effect of lunar regolith (the dust) on mammalian cells. They took lung and neuronal cells and then exposed them to materials processed to mimic lunar dust so they could assess survival and genotoxicity. They showed that the soil can cause death to some cells and DNA damage in both neuronal and lung cell lines. Certain forms of the dust had more effect than others, but it was shown that depending on conditions, lunar soil can be cytotoxic (toxic to living cells) and genotoxic (damages genetic information) to both neuronal cells and lung cells. Testing was done by cultures and not tested on real people or animals. Kim Prisk, a pulmonary physiologist from the University of California with over 20 years of experience in human spaceflight is taking part in similar research as Part of an ESA research program. She mentions that “Particles 50 times smaller than a human hair can hang around for months inside your lungs. The longer the particle stays, the greater the chance for toxic effects”. ESA make simulated moon dust from a volcanic region in Germany. See their post on Lunar dust here.

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.