NASA Turns 60

The official logo for NASA turning 60.

As of today, the 1st of October 2018, NASA has turned 60. It was created as a new agency based on its precursor NACA, started in 1915. The cold war between the USA and the Soviet Union created a space race the late 1950’s. From 1946, the National Advisory Committee for Aeronautics (NACA) was experimenting with rocket planes. One of the famous ones was the Bell X-1 that took Chuck Yeager past the speed of sound (and was the first to do so). They were also the team behind the running of the X-15 rocket plane that Neil Armstrong famously flew. In the early 1950’s there was a call to look into launching artificial satellites towards the end of the decade, mainly driven by the International Geophysical Year which was 1957/58.

The x-15 rocket plane, currently the fastest plane ever, it reached mach 7, and was developed by NACA. Credit: NASA.

An effort towards this by the USA started with Project Vanguard, led by the 
United States Naval Research Laboratory, which ended in catastrophic failure. This was the perceived state of the US side of the space race at the time. On October 4th, 1957 Sputnik 1 launched and instantly grabbed the attention of the United States public. The perceived threat to national security was known as the Sputnik crisis, and US congress urged immediate action. President Dwight D. Eisenhower with his advisers worked on immediate measures to catch up. It eventually led to an agreement to create a new federal agency based on the activity of NACA. The agency would conduct all non-military activity in space. The Advanced Research Projects Agency was also created to develop space technology for the military applications.

The failed Project Vanguard by the Naval Research Laboratory, it was meant to be the first US satellite in space but ended in disaster.

Between 1957 and 1958 NACA began studying what a new non-military space agency would be, and what it would do. On January 12th, 1958 NACA convened a “special committee on space technology” headed by Guyford Stever (director of the national science foundation). The committee had consultation from the Army Ballistic Missile Agency headed by the famous Werner Von Braun, the soon to be architect of the Saturn V. On January 14th 1958, the NACA director Hugh Dryden published “A National Research Program for Space Technology” that stated:

It is of great urgency and importance to our country both from consideration of our prestige as a nation as well as military necessity that this challenge [Sputnik] be met by an energetic program of research and development for the conquest of space… It is accordingly proposed that the scientific research be the responsibility of a national civilian agency… NACA is capable, by rapid extension and expansion of its effort, of providing leadership in space technology

On January 31st 1958, Explorer 1 was launched. Officially names Satellite 1958 Alpha, it was the first satellite of the United States. Talked about in a recent post, the payload consisted of the Iowa Cosmic Ray Instrument without a tape recorder (there was not enough time to install it). A big turning point in the US side of the space race, it gave civilian space activities a chance in the spotlight to allow for more funding.

The logo for Explorer 1, the first US satellite in space. It was the first satellite to pick up the Van Allen belts. Credit: NASA/JPL.

In April 1958, Eisenhower delivered to the U.S. Congress an address to support the formation of a civilian space agency. He then submitted a bill to create the “National Aeronautical and Space Agency”. Somewhat reworked the bill was passed as the National Aeronautics and Space Act of 1958 on July 16th. Two days later Von Braun’s Working group submitted a report criticizing the duplication of efforts between departments on space related programs in the US government. On July 29th the bill was signed by Eisenhower and NASA was formed. It began operations on October 1st 1958. NASA absorbed NACA in its entirety, including its 8,000 employees, annual budget of $100 million, and the research labs under its jurisdiction. The three main labs were Langley Aeronautical Laboratory, Ames Aeronautical Laboratory, and Lewis Flight Propulsion Laboratory. It also inherited two small test facilities. Elements of the Army Ballistic Missile Agency were transferred to NASA, including Werner Von Brauns Working Group. Elements of the Naval Research Laboratory that failed to launch project Vanguard were also transferred to NASA. In December of that year NASA gained control Jet Propulsion Laboratory (JPL). It is important to remember that NASA was based upon the success of the rocket scientist Rober Goddard, who inspired Werner Von Braun and other German Rocket scientists brought over by project paperclip. There was also huge influences from the research conducted by ARPA and US Air Force research programs.

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

McMoon: How the Earliest Images of the Moon Were so Much Better than we Realised

An Earthrise over the moon’s horizon, taken by Lunar Orbiter 1 on August 24th 1966. Credit NASA/LOIRP.

Fifty years ago, 5 unmanned lunar orbiters circled the moon, taking extremely high resolution photos of the surface. They were trying to find the perfect landing site for the Apollo missions. They would be good enough to blow up to 40 x 54ft images that the astronauts would walk across looking for the great spot. After their use, the images were locked away from the public until after the bulk of the moon landings, as at the time they would have revealed the superior technology of the USA’s spy satellite cameras, which the orbiters cameras were designed from. The main worry was the USSR gaining valuable information about landing sites that the US wanted to use. In 1971 many of the images were released, but nowhere near to their potential quality, and mainly to an academic audience as public interest in the moon had waned. Up until 2008 most of the reported images from the project were the 1966 versions that were grainy and lower quality.

Earthrise difference
Comparison of the Earthrise image shown to the public in 1966 on top, and the restored image directly from the tape on the bottom. The bottom image was released in 2008, 42 years after it was taken. Credit: NASA/LOIRP.

These spacecraft were Lunar Orbiter I to V, and they were sent by NASA during 1966 and 67. In the late 1960’s, after the Apollo era, the data that came back on analog tapes was placed in storage in Maryland. In the mid 1980’s they were transferred to JPL, under the care of Nancy Evans, co-founder of the NASA Planetary Data System (PDS). The tapes were moved around for many years, until Nancy found Dennis Wingo and Keith Cowing. They decided they needed to be digitised for future generations, and brought them to NASA Ames Research Centre. They set up shop in an abandoned McDonalds, offered to them as free space. They christened the place McMoon. The aim was to digitise these tapes before the technology used to read them disappeared, or the tapes destroyed.

The Mcdonalds
The McDonalds nicknamed McMoon, with the trademark skull and crossbones flag denoting the “hacker” methodology. Credit: MIT Technology Review.

The Lunar Orbiters never returned to Earth with the imagery. Instead, the Orbiter developed the 70mm film (yes film) and then raster scanned the negatives with a 5 micron spot (200 lines/mm resolution) and beamed the data back to Earth using lossless analog compression, which was yet to actually be patented by anyone. Three ground stations on earth, one of which was in Madrid, another in Australia and the other in California recieved the signals and recorded them. The transmissions were recorded on to magnetic tape. The tapes needed Ampex FR-900 drives to read them, a refrigerator sized device that cost $300,000 to buy new in the 1960’s.

The FR-900 that was used to restore the old images. A mix of old and new equipment to get the images to modern PC’s. Credit: MIT Technology Review.
FR-900 signed
The back of the first FR-900 has been signed by the people who brought the project to life, including Nancy Evans. Credit: MIT Technology Review.

The tape drive that they found first had to be restored, beginning with a wash in the former restaurants sink. The machine needed a custom built demodulator to extract the image, an analog to digital converter, and a monitor connection to view what was happening. As the labelling system of the tapes had been forgotten, and documentation was not readily available, they had to hand decode the coordinates on the tapes. They also had a big collection from parts of other FR-900’s and similar designs. The spare parts were constantly needed to keep the recorder going, there was good reason that the format didn’t continue for long.

moon image reels
These are just some of the reels of moon images. They use this machine to hand inspect the reels, mainly to figure out the coordinate labelling system. Credit: MIT Technology Review.

In order to read the tapes, the heads of the FR-900 apply a magnetic field to the tape inducing a current through it. The current can be measured and run through the demodulator. This pulls out the image signal, that is then run through an analog to digital converter. The data is then processed on a computer using the custom system they set up. They made custom software that interfaced with Photoshop to link the relevant parts of the image together. The orbiters sent out each image in multiple transmissions, with each strip (one tin) making up part of the image. the software manages to link up the images nearly seamlessly at the full potential resolution. The best of the images can show the lunar surface at a resolution less than 1m, much better than any other orbiter that has been there.

tapes tapes tapes
The image shows the sheer amount of tapes that the few images are stored on. Inside McMoon you can also see a sleeping bag some poor guy had to stay in. Credit:

They were huge files, even by today’s standards. One of the later images can be as big as 2GB on a modern PC, with photos on top resolution DSLRs only being in the region of 60MB you can see how big these images are. One engineer said you could blow the images up to the size of a billboard without losing any quality. When the initial NASA engineers printed off these images, they had to hang them in a church because they were so big. The below images show some idea of the scale of these images. Each individual image when printed out was 1.58m by 0.4m.

NASA printing
This image shows the large thin strip images being laid out on the floor of a large room so the engineers could look for good landing spots. Credit: NASA.
NASA Engineer
The image shows a NASA technician with a ream of photograph printouts used to assemble the overall image. Credit: NASA.

Orbiter IV was there to produce a single big image of the front side of the moon. In pictures taken between May 11-25, 1967 the Orbiter took a number of images that span the area from the north pole to the south pole and from the eastern limb to the western limb. The complete mosaic of an image stretched 40 by 45 ft. The engineers laid it out on the floor and all the observers including the astronauts had to crawl over it and take off their shoes. The images were so good, even at this size that some astronomers used magnifying glasses. This giant image was the primary source to select the sites for Orbiter V  to photograph in a higher resolution. The images taken by Orbiter V decided the exact locations for Apollo 11 to land.

Tsiolkovskiy Crater
The very prominent feature in this image is the Tsiolkovskiy Crater on the far side of the moon. Taken by Orbiter 3 on 19 February 1967. Credit: NASA/LOIRP.

Since 2007 the Lunar Orbiter Image Recovery Project has brought back 2000 images from 1500 analog tapes. The first ever picture of an earthrise. As Keith Cowing said “an image taken a quarter of a fucking million miles away in 1966. The Beatles were warming up to play Shea Stadium at the moment it was being taken.” To find more of those images go to their website, but I warn you those images are huge.

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.