A Great Start to the Space Year

2018 was a great year for space, but it was barely a few days into 2019 and three amazing achievements in space have happened. We had new Horizons studying the furthest object studied in space, the Chinese space agency landing a rover on the far side of the Moon, and OSIRIS-REx mission reached bennu.

New Horizons

By far the biggest news in the space sector recently, New Horizons officially flew by object 2014 MU69, the outermost close encounter of any Solar System object. Launching in 2016, New Horizons was a mission designed to help us understand the worlds at the edge of our Solar System. The biggest part of the mission was in 2015 when it made the first reconnaissance of the dwarf planet Pluto, producing some amazing photos. After that it kept venturing out into the Kuiper Belt to study more mysterious objects. The spacecraft is helping us to understand the basic questions about the surface properties, interior makeup, geology and atmosphere of the bodies it passes. The exploration of the Kuiper belt is one of the big priorities in planetary science currently. New Horizons fits into this plan, by seeing how Pluto and its Moons “fit in” to the other objects in the Solar System. It has already aided in finding four previously unknown Moons of Pluto, and studied the known Moon Charon in much more detail.

New Horizons Artist
An artistic impression of what New Horizons looked like when it passed Pluto and Charon. Credit: NASA Goddard Media Studios.

New Horizons was designed, built and is operated by The John Hopkins University Applied Physics Laboratory in Laurel, Maryland. Alan Stern of the Southwest Research Institute (SwRI) in Boulder, Colorado is the principal investigator. It flew by the Kuiper belt object 2014 MU69 barely a few hours into the new year at 05:33 UTC on January 1st 2019. The flyby technically ends on January 9th, where it switches from 3-axis mode to spin mode. This is the beginning of the downlink phase which could run for around 18 months! This is because it is so far away, the frequency (and therefore the data rate) is much lower than if the spacecraft was close. The current extended mission is planned to last until April 30th, 2021. If still operational there may be a new extended mission, but it has very limited fuel at about 11kg. The craft could in theory visit another Kuiper Belt object. If it lasts until the mid 2030’s it will join Voyager 2 in the Heliosphere, but based on the RTG it may run out about then.

Ultima Thule
Image of 2014 MU69, taken 30 minutes before closest approach from a distance of 28,000 km (17,000 mi). Credit: NASA/John Hopkins Applied Physics Laboratory.

Chang-E4

On January 3rd 2019 at 02:26 UTC China’s Chang’e-4 spacecraft successfully landed on the far side of the Moon. The first ever soft landing on the far side of the Moon, up until this point we only has remotely sensed images. The target of the spacecraft was the Von Kármán crater, located within the South Pole-Aitken basin. This is where an ancient lunar impact may have exposed some of the Moon’s mantle. The plan is to study this region directly with the rover and the lander. It also allows for a close up look at the far side of the Moon, which could be a perfect place for science applications such as radio astronomy. As there is no direct line of sight to the far side of the Moon they need a relay satellite. The satellite that China launched is the Queqiao relay satellite, launched in May 2018.

An image of the rover similar to the Chang’e-3’s rover. Credit: CNSA.

OSIRIS-Rex

Coming into the new year, on December 31st OSIRIS-REx entered orbit around Bennu. The orbit is at around 1.75 km (just over a mile), and is the place it will be doing an extensive remote sensing campaign. 101955 Bennu, or 1999 RQ36, is a carbonaceous asteroid in the Apollo group. Discovered in 1999, it has a 1 in 2700 chance of impacting Earth between 2175 and 2199. The name Bennu references the Egyptian mythological bird associated with the sun, creation and rebirth. The OSIRIS-REx mission is a sample return mission to the asteroid Bennu. Its goal is to obtain a sample of at least 60g and then bring that sample back to Earth for scientific study. The aim is to help scientists to learn about the formation and evolution of Solar System in its initial stages of planet formation and the source of organic compounds that eventually lead to life. If the mission is successful on September 24th 2023 it will be the first US spacecraft to return samples from an asteroid.

Asteroid Bennu, imaged by the OSIRIS-REx probe (3 December 2018). Credit: NASA/ Goddard/ University of Arizona.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on. Most of all, thank you for taking the time to read my posts this year! So all have a Happy New Year, and here’s to a great 2019 in space!

Follow @TheIndieG
Tweet to @TheIndieG

The Space Missions of 2018

2018 has definitely been a big year for space, and space exploration. I have managed to capture a few of the great moments like the launch of InSight, JAXA landing rovers on an asteroid, and the launch of the Parker Probe. There have been a few others that are notable mentions, and that is the point of this post, to talk about some great launched missions, and others that have finished their jobs, purposely or forced.

Bepicolombo

The British built Bepicolombo launched in October 20th, to begin its 7 year journey to visit Mercury. Currently one of the least explored planets in the solar system, Bepicolombo intends to change that. When it arrives in late 2025 it will endure temperatures of over 350 °C, and be there for at least a year, possibly for twice that. It is made up of two spacecraft, the Mercury Planet Orbiter (MPO) lead by ESA, and the Mercury Magnetospheric Orbiter (MMO) lead by JAXA. The aim is to measure the composition, atmosphere and magnetosphere of Mercury to understand its history. This could lead to understanding more about how other planets such as Earth formed. BepiColombo is named after Professor Giuseppe (Bepi) Colombo (1920-1984) from the University of Padua, Italy. He made big leaps in understanding Mercury, and suggested to NASA how to use a gravity-assist swing-by of Venus to place Mariner 10 into a solar orbit of Mercury.

Bepicolombo artists impression
Artist’s impression of the BepiColombo spacecraft in cruise configuration. The Mercury Transfer Module is at the bottom. The Mercury Planetary Orbiter is in the middle. The Mercury Magnetospheric Orbiter sits inside the sunshield, visible at the top. Credit: ESA/ATG medialab

InSight

Back in May I posted about how an Atlas V had just lifted the Mars Insight lander. In late November the $814 million lander it reached its target of the Elysium Planitia region of Mars, landing safely. The aim is for it investigate how the processes that shaped all the inner rocky planets more than 4 billion years ago worked. It uses two seismometers (one of which built by RAL space in the UK) and a number of other instruments to study the crust, mantle and core of the red planet. It works by measuring how much the area shakes when asteroids hit the planet. Also measuring the heat flow and precision tracking it is getting a glimpse of Mars we have yet to see. The launch also allowed for two cubesats, MarCO-A and MarCO-B to be the first to be launched into deep space. The first test of miniaturised cubesat technology being used on another planet. This mission will be one to watch for the near future.

There’s a quiet beauty here. Looking forward to exploring my new home. #MarsLanding pic.twitter.com/mfClzsfJJr— NASA InSight (@NASAInSight) November 27, 2018

Kepler

A bit sadder news is the end of the Kepler space telescope after 9 years service. It has collected a huge amount of data in its lifetime, finding the night sky is filled with billions of hidden planets, more planets than stars. This may seem obvious but is not easy to prove. During its time the planet hunter has found evidence of more than 2,600 planets outside our solar system, and left hints at many more, paving the way for future planet hunters and getting good engineering data on what works and what doesn’t. Telescopes such as ARIEL which will launch in the net decade will have better design due to Kepler. The space telescope had been running low on fuel for months, and struggled to point the correct way. After the 4 year mission it continued to work a different mission named K2. In October it was officially declared dead, left in orbit as it may have been dangerous for it to enter the atmosphere.

The Kepler Space Telescope mission, by the numbers
The Kepler Space Telescope mission, by the numbers. Credit: NASA/Ames/Wendy Stenzel

Parker Solar Probe

Back in august I wrote about the classic Delta IV heavy launching with the Parker Solar Probe aboard. The aim is to get closer to the sun than previously possible. Over the next seven years the probe will make 24 close approaches to the sun, with the aim of eventually getting within 3.8 million miles of the surface. The previous record (that Parker has now broken) was 26.6 million miles, set in 1976. It will revolutionise our understanding of the sun, and how the changing conditions can affect the solar system. It will use Venus’ gravity to slowly get closer to the sun. As a reference, we are 93 million miles away from the sun. It will eventually fly through the sun’s outer atmosphere, known as the Corona for the first time, getting brand new, in situ measurements. The spacecraft has a 4.5 inch thick carbon composite shield to protect it from the heat and radiation. The temperatures will reach over 1300 C.

Parker Solar Probe in the Fairing
Parker Solar Probe in the Fairing, ready to be put on the rocket in the clean room. Credit: NASA/Johns Hopkins APL/Ed Whitman

TESS

Back in April I posted about the launch of the TESS exoplanet hunter by a Falcon 9. I have already talked about exoplanets and planet hunters, and this is a big part of that plan. TESS stands for Transiting Exoplanet Surveying Satellite, and it does what it says on the tin, it is surveying the sky for potential exoplanets. Basically it is looking for exoplanets that could harbour life. The expectation is that it will catalog thousands of planet candidates and vastly increase the known number of exoplanets. Approximately 300 are expected to be Earth-sized and super-Earth-sized exoplanets that can then use the future more complex telescopes such as JWST to look at in more detail. The satellite will look at the sky for two years by breaking it up into 26 sections, and looking at each one for 27 days at a time. Unlike Kepler and K2 TESS will be looking at brighter stars, meaning ground based observatories can corroborate the observations.

the TESS telescope
The TESS satellite before launch, the four cameras can be seen on the top of the spacecraft; Credit: NASA.

Dawn

In September I posted about the Dawn spacecraft and the rise of Ion Engines. With the loss of the Dawn mission around the same time as Kepler, they ran out of fuel within two days of each other. The 11 year Dawn mission racked up a few very important records. It is the first spacecraft to orbit two different celestial bodies, and the first to orbit any object in the main asteroid belt between Mars and Jupiter. It is also a record breaker for electric speed. Travelling over 25,700 mph. Visiting Ceres and Vesta, it found out some very important scientific data that tells us a huge amount about the formation of our solar system. With a large proportion of the meteorites hitting Earth coming from these two bodies, Dawn showed the difference between the potential dwarf planets. One of the early uses of ion engines, it also showed the potential of the efficient form of travel, and now many more satellites are using them.

Dawn prior to encapsulation at its launch pad on July 1, 2007. Credit: NASA/Amanda Diller

Mars Rovers

This is a mixed bag, we have already had great news about the InSight lander, with it recording sounds of Martian winds, the rovers also have big news this year. In June the Curiosity rover found Organic matter in the Martian soil. The samples, taken from 3 billion year old mudstone contained complex hydrocarbons. This along with its detection of methane changes in the atmosphere are one step along the way to finding evidence of life on other planets. There have also been many more photos from the red planet, with Curiosity taking a few more selfies. See here how the car sized rover achieves the great pictures. On the other side of it there was a huge Martian storm that may have killed the Opportunity rover by covering the solar panels in dust. Although there are still hopes the rover can start communications again, we will have to see.

Curiosity in a dust storm
An image shared by Seán Doran on Sunday of the Mars Curiosity in the middle of a dust storm reported to cover an area the size of the US and Russia Combined. CredIt: NASA/JPL/Seán Doran.

Asteroid Rovers

In late september, another great story came out, that JAXA (the Japanese space agency) successfully landed a number of rovers on an asteroid. Still to launch all of the four onto the surface, there are already great images from the surface of an asteroid. The little rovers use a hopping mechanism to get around, as the gravity on the asteroid is so small a wheeled rover just wouldn’t work. The spacecraft will also be attempting to collect samples to return to Earth in the coming years. The Hayabusa 2 probe is a follow up to the Hayabusa probe which was not a sample return. The second launched on December 3rd 2014 and rendezvoused with the near-earth asteroid 162173 Ryugu on the 27th of June 2018. Currently in the process of surveying the asteroid for a year and a half, it will depart in December 2019, returning to Earth in December 2020.

 MINERVA-II image
First pictures from a MINERVA-II-1 rover that landed on the asteroid. Credit: JAXA.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on. Most of all, thank you for taking the time to read my posts this year! So all have a Happy New Year, and here’s to a great 2019 in space!

Follow @TheIndieG
Tweet to @TheIndieG

Why The Moon Could Fuel Future Space Missions

A recent report funded and published by the United Launch Alliance outlines the the potential viability of mining the Moon for rocket fuel. At over 170 pages, it is quite a read but Philip Metzger, one of the authors wrote a good summary on his website. I thought I would try and make a similar summary here with slight more explanation, and where it fits into the future NASA plans of getting back to the Moon and going onward to Mars and beyond. It all revolves around water, or more specifically ice. For many years we thought the Moon was a baron rocky cold desert. The samples that the Apollo astronauts brought back from the Moon, and the Soviet Luna samples imply that there is no water in the rocks or regolith. The trace amounts of water found in the samples were assumed to be contamination. Although, in 2008, a study of the Apollo rock samples did show some water molecules trapped in volcanic glass beads. Also in 1978, Soviet scientists published a paper claiming the 1976 Luna 24 probe contained 0.1% water by mass. Plus the Apollo 14 ALSEP Suprathermal Ion Detector Experiment (SIDE) detected the first direct evidence of water vapor ions on March 7th 1971. None of these discoveries were taken as conclusive proof of water on the Moon at the time.

An image of the SIDE experiment from Apollo 14. It measured the energies and masses of positively charged ions near the surface of the Moon and also studied the interaction between the solar wind and the Moon as the Moon moved through the Earth’s magnetic field. Credit: NASA.

On September 24th 2009 it was reported that the Moon Mineralogy Mapper (M3) spectrometer on India’s Chandrayaan-1 spacecraft had detected water ice on the Moon. The map of the features show that there is more at cooler, higher latitudes, and in some deep craters. Basically, the parts of the Moon that see the least light like the poles and far into craters near the poles have managed to keep the water on and below the surface. This water is in a number of different states, some locked up in minerals, some in ice form, and others in OH form, not technically water but near. This has lead to a number of new possibilities of inhabiting the Moon and using its resources. This is why the United Launch Alliance funded a paper on the possible use of mining this water and using it as a future fuel source. By some estimates there could be as much as 10 billion tonnes of water on the Moon. The water could in theory be mined, and through electrolysis turned into hydrogen and oxygen, the fuel that got men to the Moon on the famous Saturn V.

Left side of the Moon Mineralogy Mapper that was located on the Chandrayaan-1 lunar orbiter. Credit: NASA

But you have to ask, why does it matter? the Moon is far away, and surely water is just useful for astronauts living on the Moon to survive. Well the report talks about the business case to use the water as fuel, in the form of hydrogen and oxygen. First we need to understand the commercial satellite world, and geostationary satellites. When first sending up such satellites, the way to do it was to use a multi stage rocket, with the first stage getting to a Geostationary Transfer Orbit (GTO) and then the second (upper) stage being used to get into the Geostationary Orbit (GEO). Recent years have allowed the first stage to be hugely improved and often reusable by companies like SpaceX and Blue Origin. The second stage hasn’t had the same improvements though. Traditionally the second stage was a normal, and very heavy liquid rocket. This meant that it was very expensive to get things to GTO, much more difficult than LEO. The rocket was also thrown away afterwards, and as it is so far out it will take hundreds or even thousands of years to burn up in the atmosphere. 

A diagram of the traditional way to boost communication satellites into orbit. Credit Dr Phil Metzger

Now we do have a better way to do it, sort of. I talked recently about the rise of electric thrusters. A lightweight, cheap and powerful solution when used over a long period of time. Over the time span of years they can pick up speeds of thousands of miles per hour. That is the biggest downside of them though, in this situation, slowly pushing the satellite to orbit, they take up to a year to get a satellite into position. That is a year that it could be making the owner money. By some estimates that year could lose $100 million in revenue just waiting for the slow thrusters. By all accounts though, this is still cheaper than launching a large traditional rocket upper stage. The electric thrusters are amazingly light comparatively, which means you need a smaller first stage to get it up to space in the first place. The key thing you have to remember about these geosynchronous satellites is that they already have a huge price tag, some can cost upwards of half a billion dollars to build and launch.Part of the reason is that they tend to be huge, in size and weight. Some have been as big as London double Decker buses, and weigh 6 tonnes. The rockets then need to get them to one of the furthest and time consuming orbits, a costly exercise. 


A diagram of the current way to boost communication satellites into orbit. Credit Dr Phil Metzger

So why can this Moon mining idea help? well the Moon is in lots of countries space plans at the moment. China are currently sending lots of probes, and by some accounts looking to get humans there. The USA are building the SLS which should be able to get humans to the Moon, and are also developing the LOP-G idea. The concept to have an orbital station around the Moon, almost like a fuel stop for rockets going on to further parts of the solar system. This idea to mine the Moon for hydrogen and oxygen could be transferred up to this orbital space station to be transferred to the rockets that need it. This is where the geosynchronous satellites come in. Imagine if this fuel, that is dug up and processed by robots, and then sent up to an orbital station could be brought back closer to Earth via a space tug. This space tug could meet up with the rocket with the satellite on board. The upper stage rocket could have been sent up with no fuel (the heaviest bit) and is fueled by this space tug. It would allow for the speed of the old style engines, but the weight of newer electric engines. As long as the price for this whole system is cheaper than the $100 million it currently costs, then it could be a viable option. All the while, setting ground work for space agency’s to have viable water sources that can be used for future exploration. It may be the future of space travel.

Atlas 5 taking off
Atlas 5 lifting off from pad 41 at Cape Canaveral Air Force Base. If this idea takes off, these rockets could propel much larger payloads into much bigger orbits. Credit: @marcuscotephoto on Twitter

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

Where Did the Ending of First Man Come From

For those out there who love space and the history behind it, of which I count myself, Damien Chazelle and Ryan Gosling have created First Man. The film follows the life of Neil Armstrong on the run up to the Apollo 11 landings where he became the first man to step foot on the Moon. All in all a great film, with lots of historical facts for those who know where to look. Beyond the few big plot points that Chazelle took minor liberties with, it gives a good account of run up to a huge moment for human engineering. The thing this post is focused on though, was the ending accurate, did Neil Armstrong actually throw his daughters bracelet into the crater.

A promotional still from the First Man film of Ryan Gosling as Neil Armstrong.

On the 20th of July 1969, Neil Armstrong and Buzz Aldrin spent 2 hours and 31 minutes exploring the lunar landscape, conducting experiments and collecting samples. All of it was scripted by NASA, practiced down to the last minute. There was a moment though where Neil took a short deviation from the plan, and that did actually happen. He wandered over to an area known as Little West Crater and took a moment there. It is not publicly known what happened at the edge of the crater, whether he was just reflecting, or like in the movie he may have thrown something into it. Either way it is unclear what actually happened, but some effort has been made to find out, mainly by the author of the First Man official biography in 2012, James K. Hansen.

The front cover of the book First Man. The official biography of Neil Armstrong, written by James R. Hansen.

Hansen spent four years researching the book about Armstrong, speaking to Neil himself and most of his family including his ex-wife Janet, Sister June and his children Eric and Mark. Throughout the interviews he develops a hunch that Neil may have left something on the Moon. This isn’t a crazy idea either because the astronauts did leave sentimental items on the Moon. On that very mission Buzz Aldrin left an Apollo 1 mission patch to commemorate the lost astronauts in the fire. The 10th person on the Moon, Charlie Duke left a photo of his family on the surface in 1972.

One of the photographs taken of the picture of Charlie Dukes family left on the lunar surface. Part of the Apollo archived photos. Credit: NASA

The big question is if he ever took the bracelet in the first place. If he did he wouldn’t have just snuck it on, it would be in the manifest known as the personal property kit (PPK) and Neil had a copy of this. When probed by Hansen he claimed to have lost the document, but on his death in August 2012 all of his archives were donated to his Alma mater Purdue University, and the document was part of it. The archives are under seal until 2020. When Hansen asked his sister June whether she thought he left something on the Moon for Karen she said “Oh I hope so”. Some may see the ending as a dreamt up Hollywood-ised version of the Moon landing. The decision not to add in the planting of the flag upset many Americans, and labeled the film as un-american. For me though, the scene when he steps foot upon the Moon is more important. That is the moment people remember, the bit that really counted. Plus the flag was included in the film, just not the planting of it.

A promotional still from the First Man movie, with Ryan Gosling as Neil Armstrong on the lunar surface with the sun visor down.

On a final note, I really liked some of the additions the film made. I loved the bit at the start where Chuck Yeager, who famously disliked Armstrong, grounded him. There were lots of tidbits and facts that were added in just to show that they had done their research. There were some inconsistencies, his daughter actually died well before that exact X-15 flight that got him grounded. There was also a famous point where Armstrong had to eject from the flying bedstead which got him in trouble. He is seen to be talking and arguing after, but in real life he had bit his tongue and could speak for days. Also, after the Apollo 1 fire the administrator, James Webb resigned, whereas they don’t seem to change the character in the films to make it simpler. These are not really massive plot problems though, they make little difference to the story, and don’t change our view of him. The minor changes made the film flow better, and those who care know the issues. Overall, it is a film people need to see.

Ryan Gosling as Neil Armstrong in First Man, just after he crashes the flying bedstead, in real life he bit his tongue so badly that he couldn’t speak for days after.

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

The Geeky Geological Features of Charon

As talked about in a previous post, Charon was named after the wife if the discoverer James Christy. Since then the New Horizons probe has visited and taken some amazing pictures of the surface. As part of the mapping they have also started naming some of the craters and other geological features found on the surface, and they all have very fictional culture names. Although some have been accepted but he International Astronomical Union, there are still many that haven’t. As of April 2018 they have set out an agreed naming convention and set of rules for the names. They should conform to one of the following:

  • Destinations or milestones of fictional space and other exploration.
  • Fictional and mythological vessels of space or other exploration.
  • Fictional and mythological voyagers, travelers and explorers.
  • Authors and artists associated with space exploration, especially Pluto and the Kuiper Belt.

So far there have been many provisional names given by the New Horizons team based on mostly science fiction franchises such as Star Wars, Star Trek, Doctor Who and Firefly. Most are still provisional, but some have been accepted

Charon Enhanced
An enhanced colour version of Charon taken by New horizons space probe. It is enhanced to show the differences in surface composition. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.

A Terra is a large landmass or highland, and there is only one highland region on Charon. It was named Oz Terra after the Wonderful Wizard of Oz children’s novel by L. Frank Baum. The dark spots on the surface are called maculae in planetary science. The first is named Gallifrey Macula after the home planet of Doctor Who (Gallifrey). The second is the Mordor Macula after the base of Sauron in the Lord of the rings books by J.R.R. Tolkien. A planum is a scientific name for a plateau (elevated plain) and Charon only has one. Named Vulcan Planum after the home planet of Spock in the Star Trek Series. Terrae, Maculae and Plana are all being named after fictional destinations. A Mons is a planetary mountain, you may have heard of some of the Mons currently being explored by NASA rovers on Mars. Charon has three major mountains and are named after authors and artists. Butler Mons is named after Octavia E. Butler, an american science fiction author. Clarke Montes is named after Arthur C. Clarke, a famous English science fiction author who wrote 2001: A Space Odyssey. Kubrick Mons is named after Stanley Kubrick, a film director of films such as the shining and clockwork Orange. All three of the Mons names are accepted by the IAU.

Mordor Macula is located at Charon. A large dark area about 475 km in diameter near the north pole of Charon, Pluto’s largest moon. It is named after the shadow lands in J.R.R. Tolkien’s The Lord of the Rings.  It is not currently known what Mordor is. It may be frozen gases captured from Pluto’s escaping atmosphere, a large impact basin, or both. Credit: NASA

A chasma is a deep steep sided depression (a chasm), and are being named after fictional vessels. Argo Chasma is named after a ship in the Greek myth of Jason and the Argonauts, it is also the spaceship in the English translation of the Space Battleship Yamato anime series. Caleuche Chasma is named after the mythological ghost ship that travels the seas around Chiloé Island off the coast of Chile, collecting dead who then forever live aboard (much like Davy Jones). Mandjet Chasma is named after the solar boat of the ancient Egyptian God Ra. All three of the above Chasmas are recognised by the IAU. Macross Chasma is named after the SDF-1 spaceship in the Macross anime series. Nostromo Chasma should be known to most as the spaceship in the Alien films. Serenity Chasma is from the spaceship used in the Firefly series. Tardis Chasma is named after the infamous blue box flown by Doctor Who.

Annotated map of Charon, with provisional names for features. Credit: NASA/JPL.

There are 16 notable craters found on Charon’s surface, of which six have officially recognised names. They have all been named after characters associated with science fiction and fantasy. Dorothy Crater is named after the main character is the Wizard of Oz, also naming the only terra on Charon. Nasreddin crater is a sufi traveler from folklore. Nemo is after Captain Nemo from novels by Jules Verne. Pirx crater is the main character from the short stories by Stanislaw Lem. Revati Crater is named after the main character in the Hindu epic narrative Mahabharata. Sadako Crater is the adventurer who traveled to the bottom of the sea in the medieval Russian epic Bylina. All of the above craters have been officially recognised by the IAU. Alice Crater is named after the main character of the Lewis Carroll novels. Kaguyahime Crater is named after the princess of the Moon in Japanese folklore. Organa Crater is named after princess Leia in the Star wars films, along with Vader Crater, and Skywalker crater. Ripley Crater is one of the more studied craters and is named after the main character in the Alien films. Kirk Crater, Spock Crater, Sulu Crater, and Uhura Crater are all named after main characters in the Star Trek TV franchise.

Photo of Charon centered on Ripley Crater. Nostromo Chasma crosses Ripley vertically. Vader is the dark crater at 12:00, Organa Crater is at 9:00, Skywalker Crater at 8:00, Gallifrey Macula and Tardis Chasma at 4:00. Credit: NASA/JPL

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

Notes From NASA’s Chief Scientist Jim Green’s Talk on The Search For Extraterrestrial Life

A few weeks ago my place of work, STFC, was lucky enough to host NASA’s chief scientist Jim Green for a talk titled “The search for life on Earth in space and time”. At the time of writing there is a version of the talk on University of Oxfords Facebook page. A really interesting talk for anyone interested in space, and our solar system. It also goes much more in depth that this post today and gives a real insight into current science of our solar system. A planetary scientist himself he talks about the planets in our solar system that could harbor life and those that might have done previously. I found it a real insight into what NASA’s goals are and where they are looking for signs of life. I personally enjoyed the talk as Jim Green hosts the “Gravity Assist” podcast made by NASA.

logo for NASA’s Gravity Assist podcast hosted by Jim Green. Credit: NASA.

The first real point he made was how to define what life is, which is a reasonable question. If you want to go out and find life on other planets, how do you know when you have found it? Spacecraft and astronauts need instruments and tools to detect things, and to build those instruments you need to know what they are looking for. The definition they came up with was that life needs three things, to metabolize, reproduce and evolve. This is a pain because it’s difficult to see any of those things directly. If you take just the metabolizing part and break it down it makes it a bit simpler, you need organics, the energy source, and water. You also need some way to get rid of waste. Plus we need to take into account time, you could have a fully habitable environment but not have life if it isn’t the right time.

The ingredients needed for life, a slide in the Jim Green Talk. Credit: NASA

Time is a really important factor, Earth has existed for 4.6 billion years, and it hasn’t always had life. They have been at least 5 mass extinction events in that time as well. To really see what is happening we need to look at how the sun has changed over that time, it is the thing in the solar system with the most effect on us. Since its birth 4.6 billion years ago it has brightened, with the luminosity increasing up to 25 or 30% by some estimates. We know that the Goldilocks region or habitable zone of a star exists where water can exist in all three states, but that depends on how big the star is and how bright it is, and therefore over time this Goldilocks region changes. This would make life simpler when looking for exoplanets, just work out where the habitable zone is and choose planets in it, unfortunately it isn’t that simple. 

A diagram of how the habitable zone of a star changes over time with different brightnesses. Credit: NASA

Let’s start off with Mercury, the closest planet to the sun. It is larger than the moon, but it isn’t large by any means. It has a magnetic field, it is nearly tidally locked and it is incredibly hot. It out gasses, and from Messenger data most scientists have agreed that it has never had a substantial atmosphere, so water is very unlikely to have existed there. The next candidate would be Venus, it is a similar size to the Earth after all. The Soviet Union Venera missions looked at the atmosphere and the temperature, and found it is extremely hot. The surface is hot enough to melt lead, and the pressure is 90 times that of our own planet. The NASA Magellan probe found it to be highly volcanic, with a very thick atmosphere. This means there is basically no chance of water, and makes Venus a bad choice for finding life today. Using some fairly interesting concepts, scientists have modeled what early Venus may have looked like and found it likely had water at some point, but the runaway greenhouse effect along with the lack of magnetic field has stripped all water away. That being said one day we could produce probes good enough to dig through the surface and look for signs of life below the ever evolving surface layer.

Five global views of Venus by the Magellan probe. Credit: NASA.

The next obvious choice is Mars, much larger than the Moon, but only about half the size of Earth. It’s a bit of a runt due to Jupiter. The asteroid belt between Mars and Jupiter is made of rocks that could have been a part of Mars, but Jupiter’s massive gravitational pull denied that. We also know that at some point in its life it had oceans that covered two thirds of the surface that could have been up to a mile deep in places. It then went through massive climate change, and it lost its magnetic field. That means the solar winds have stripped away the atmosphere and left a dry and arid surface. The pressure is about 1% that of Earth. Plus as it is fairly close to Earth it means that we can visit it fairly easily. From a number of missions including satellites and a number of rovers, we know that there are organic compounds on the surface, and likely water under the surface. Although not a guarantee of life it is a big hint. There a number of missions planned including ESA’s ExoMars, and NASA’s InSight and the 2020 rover. These missions are designed to drill into the surface and understand more about the planet, and what the water held.

True color image of Mars taken by the OSIRIS instrument on the ESA Rosetta spacecraft during its February 2007 flyby of the planet. Credit: ESA.

We talked about the habitable zone, but there is another line (or sphere technically) that planetary scientists use called the snow line. Lying somewhere in the Kuiper belt, it defines that liquid water cannot exist beyond it. For a long time that was thought to be true, but research has revealed that some moons have liquid water below their icy surface. In 1611 Galileo discovered some of Jupiter’s moons, and they have been visited and studied by the Juno and Galileo probe. All the moons at one point had an ice crust. Scientists have found that some moons such as IO, lost this crust and have become very volcanic and volatile. Ganymede, Callisto and Europa still have this ice crust. Only Ganymede and Europa have any signs of a watery ocean underneath the crust, but Ganymede is somewhat ruled out from having life because of its very cold temperatures. This leaves Europa in this Jupiter habitable zone. Slightly smaller than out moon, it has been shown to have watery geysers that reach 400 km above the planet. That would be equivalent to Earth geysers hitting the space station. From tests by Galileo data it has been shown to have twice as much water than on Earth. Plus it has been like that for 4.6 billion years, so that is a good indication that there could be microbial or even complex life below the surface. There is a mission planned to go to visit Europa called Europa Clipper.

An image showing the icy crust of Jupiter’s moon Europa. Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth’s moon. This image was taken on September 7, 1996, by the camera on board the Galileo spacecraft during its second orbit around Jupiter. Credit: NASA/JPL/DLR.

Then there is Saturn, which has had many studies, and the thing that stands out is the moon Enceladus. It is the moon that really drew NASA’s attention to the possibility of water on these distant moons. It also has geysers, coming from huge cracks in the southern hemisphere. They are huge walls or water just pouring out of the body. With it being only a small moon of around 300 km, it suffers from tidal forces. The water pours out less when it is closer to to Saturn, and more when it is further away (due to an elliptical orbit). This has been measured and shown, as the Galileo spacecraft actually flew through one of the geysers and didn’t know it. We have spacecraft that have literally tasted this water. About 98% of the water that comes out of the geysers falls back onto the moon, but that 2% escapes and forms an e-ring. The Cassini spacecraft also flew through these plumes and managed to measure some of this water, and more importantly small bits of rock. It gives indications of hydro thermal vents being the cause of these plumes of water.

NASA’s Cassini spacecraft captured this view as it neared icy Enceladus for its closest-ever dive past the moon’s active south polar region. Credit: NASA/JPL

Another spectacular moon of Saturn in the running is the famous Titan. It is bigger than the planet Mercury, the atmosphere is about twice that of ours, and is dominated by nitrogen. Trace gasses of methane and ethane have been detected, and it has large bodies of liquid. Radar images of the surface piercing through the thick atmosphere show rocky terrain and flat lakes of liquid methane. This has spurred on the idea that life could be very different, and could survive in such liquids as methane. So if we want a chance of finding life not like us then Titan would be the best place to go. There are a number of important missions that are planned to visit Titan and make much better measurements of the surface. Including robotic missions and maybe even very simple rovers. By all accounts it is still in early stages.

These six infrared images of Saturn’s moon Titan represent some of the clearest, most seamless-looking global views of the icy moon’s surface produced so far. The views were created using 13 years of data acquired by the Visual and Infrared Mapping Spectrometer (VIMS) instrument on board NASA’s Cassini spacecraft. Credit: NASA/JPL-Caltech/University of Nantes/University of Arizona

This data taken from these missions have allowed us to look further afield to find exoplanets that could fit what we now use to define habitable planets. Missions such as Kepler have refined the way to detect planets by looking at stars for long periods of time. looking at how stars dim and wobble when planets go in front if them. The big exoplanet mission for NASA currently is TESS. Launched in April it has gone through its commissioning and is already finding planets out there. The idea for it is to take large amounts of images over a long time and try to find as many exoplanets as possible. Hopefully producing thousands of potential planets, the best looking ones can then use much more powerful and advanced telescopes such as JWST to make better measurements and tease out the atmosphere and makeup of these exoplanets. One closing point that Jim Green made, when you go out and look at the stars at night, just remember that there are more planets on our galaxy than there are stars visible in the sky. 

One of the first images taken by NASA TESS, centered on the southern constellation Centaurus, reveals more than 200,000 stars. Credit: NASA.

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

NASA Turns 60

The official logo for NASA turning 60.

As of today, the 1st of October 2018, NASA has turned 60. It was created as a new agency based on its precursor NACA, started in 1915. The cold war between the USA and the Soviet Union created a space race the late 1950’s. From 1946, the National Advisory Committee for Aeronautics (NACA) was experimenting with rocket planes. One of the famous ones was the Bell X-1 that took Chuck Yeager past the speed of sound (and was the first to do so). They were also the team behind the running of the X-15 rocket plane that Neil Armstrong famously flew. In the early 1950’s there was a call to look into launching artificial satellites towards the end of the decade, mainly driven by the International Geophysical Year which was 1957/58.

The x-15 rocket plane, currently the fastest plane ever, it reached mach 7, and was developed by NACA. Credit: NASA.

An effort towards this by the USA started with Project Vanguard, led by the 
United States Naval Research Laboratory, which ended in catastrophic failure. This was the perceived state of the US side of the space race at the time. On October 4th, 1957 Sputnik 1 launched and instantly grabbed the attention of the United States public. The perceived threat to national security was known as the Sputnik crisis, and US congress urged immediate action. President Dwight D. Eisenhower with his advisers worked on immediate measures to catch up. It eventually led to an agreement to create a new federal agency based on the activity of NACA. The agency would conduct all non-military activity in space. The Advanced Research Projects Agency was also created to develop space technology for the military applications.

The failed Project Vanguard by the Naval Research Laboratory, it was meant to be the first US satellite in space but ended in disaster.

Between 1957 and 1958 NACA began studying what a new non-military space agency would be, and what it would do. On January 12th, 1958 NACA convened a “special committee on space technology” headed by Guyford Stever (director of the national science foundation). The committee had consultation from the Army Ballistic Missile Agency headed by the famous Werner Von Braun, the soon to be architect of the Saturn V. On January 14th 1958, the NACA director Hugh Dryden published “A National Research Program for Space Technology” that stated:

It is of great urgency and importance to our country both from consideration of our prestige as a nation as well as military necessity that this challenge [Sputnik] be met by an energetic program of research and development for the conquest of space… It is accordingly proposed that the scientific research be the responsibility of a national civilian agency… NACA is capable, by rapid extension and expansion of its effort, of providing leadership in space technology

On January 31st 1958, Explorer 1 was launched. Officially names Satellite 1958 Alpha, it was the first satellite of the United States. Talked about in a recent post, the payload consisted of the Iowa Cosmic Ray Instrument without a tape recorder (there was not enough time to install it). A big turning point in the US side of the space race, it gave civilian space activities a chance in the spotlight to allow for more funding.

The logo for Explorer 1, the first US satellite in space. It was the first satellite to pick up the Van Allen belts. Credit: NASA/JPL.

In April 1958, Eisenhower delivered to the U.S. Congress an address to support the formation of a civilian space agency. He then submitted a bill to create the “National Aeronautical and Space Agency”. Somewhat reworked the bill was passed as the National Aeronautics and Space Act of 1958 on July 16th. Two days later Von Braun’s Working group submitted a report criticizing the duplication of efforts between departments on space related programs in the US government. On July 29th the bill was signed by Eisenhower and NASA was formed. It began operations on October 1st 1958. NASA absorbed NACA in its entirety, including its 8,000 employees, annual budget of $100 million, and the research labs under its jurisdiction. The three main labs were Langley Aeronautical Laboratory, Ames Aeronautical Laboratory, and Lewis Flight Propulsion Laboratory. It also inherited two small test facilities. Elements of the Army Ballistic Missile Agency were transferred to NASA, including Werner Von Brauns Working Group. Elements of the Naval Research Laboratory that failed to launch project Vanguard were also transferred to NASA. In December of that year NASA gained control Jet Propulsion Laboratory (JPL). It is important to remember that NASA was based upon the success of the rocket scientist Rober Goddard, who inspired Werner Von Braun and other German Rocket scientists brought over by project paperclip. There was also huge influences from the research conducted by ARPA and US Air Force research programs.

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

The Dawn of Ion Engines

Ion thrusters are becoming a bigger and bigger part of modern satellite design. Over 100 geosynchronous Earth Orbit communication satellites are being kept in the desired locations in orbit using this revolutionary technology. This post is about its most amazing achievement to date, the Dawn Spacecraft. Just reported that it is at the end of its second extension of the mission it has a few records under its belt. It is the first spacecraft to orbit two different celestial bodies, and the first to orbit any object in the main asteroid belt between Mars and Jupiter. It is also a record breaker for electric speed. Travelling over 25,700 mph it is 2.7x faster than the previous fastest electric thrusted spacecraft. That is a comparable speed to the Delta 2 launch vehicle that got it to space in the first place.

Delta 2 launch
The Dawn spacecraft launching on a Delta 2 rocket from Cape Canaveral Air Force Station SLC 17 on Sept 27th, 2007. Credit: NASA/Tony Gray & Robert Murra

The Dawn mission was designed to study two large bodies in the main asteroid belt. This is to get a deeper insight into the formation of the solar system . It also has the added benefit of testing the ion drive in deep space for much longer than previous spacecraft. Ceres and Vesta are the two most massive bodies in the belt, and are also very useful protoplanets from a scientific standpoint. Ceres is an icy and cold dwarf planet whereas Vesta is a rocky and dry asteroid. Understanding these bodies can bridge the understanding of how the rocky planets and icy bodies of the solar system form. It could also show how some of the rocky planets can hold water/ice. In 2006 the International Astronomical Union (IAU) changed the definition of what a planet is, and introduced the term “dwarf planet”. This is the change that downgraded Pluto from its planet status, although that has been argued to be wrong by Dr. Phil Metzger in a recent paper. Ceres is classified as a dwarf planet. As Dawn arrived at Ceres a few months before New Horizons reached Pluto, Dawn was the first to study a dwarf planet.

Dawn prior to encapsulation at its launch pad on July 1, 2007. Credit: NASA/Amanda Diller

The ion engine is so efficient that without them a trip to just Vesta would need 10 times more propellant, a much larger spacecraft, and therefore a much larger launch vehicle (making it much more expensive). The ion propulsion system that it uses was first proven by Deep Space Mission 1, along with 11 other technologies. Dawn has three 30 cm diameter (12 inch) ion thrust units. They can move in two axis to allow for migration of the center of mass as the mission progresses. The attitude control system can also use the movable ion thrusters to control the attitude. The mission only needs two of the thrusters to complete the mission, the third being a spare. All three have been used at some point during the mission, one at a time. As of September 7th 2018 the spacecraft has spent 5.9 years with the ion thrusters on, which is about 54% of its total time in space. The thrust to its first orbit took 979 days, with the entire mission being over 2000 days. Deep Space 1’s mission in contrast lasted 678 days before the fuel ran out.

An artist’s impression of Dawn with its ion thrusters on. Credit: NASA

The thrusters work by using electrical charge to accelerate ions from xenon fuel to speeds 7-10 times that of chemical engines. The power level and the fuel feed can be adjusted to act like a throttle. The thruster is very thrifty with its fuel, using a minor 3.25 milligrams of xenon per second, roughly 280g per day, at maximum thrust. The spacecraft carried 425 kg (937 pounds) of xenon propellant at launch. Xenon is a great fuel source because it is chemically inert, easily stored in compact form. Plus the atoms are very heavy so they provide large thrust compared to other comparable candidate propellants. At launch on Earth the xenon was 1.5 times the density of water. At full thrust the ion engines produce a thrust of 91 mN, which is roughly the force needed to hold a small sheet of paper. Over time these minute forces add up and over the course of years can produce very large speeds. The electrical power is produced by two 8.3 m (27 ft) x 2.3 m (7.7 ft) solar arrays. Each 18 meter squared (25 yard squared) array is covered in 5,740 individual photo voltaic cells. They can convert 28% of the sun’s energy into useful electricity. If these panels were on Earth they would produce 10 kW of energy. Each of the panels are on gimbals that mean they can turn any time to face the sun. The spacecraft uses a nickel-hydrogen battery to charge up and power during dark points in the mission.

The dawn mission patch.  This logo represents the mission of the Dawn spacecraft. During its nearly decade-long mission, Dawn will study the asteroid Vesta and dwarf planet Ceres Credit: NASA.

Vesta was discovered on March 29th 1807 by astronomer Heinrich Wilhelm Olbers, and is named after the Roman virgin goddess of home and hearth. The Dawn mission uncovered many unique surface features of the protoplanet ,twice the area of California, that have intrigued scientists. Two colossal impact craters were found in the southern hemisphere, the 500 km (310 miles) wide Rheasilvia basin, and the older 400 km (250 miles) wide Veneneia crater. The combined view of these craters was apparent even to the Hubble telescope. Dawn showed that the Rheasilvia crater’s width is 95% of the width of Vesta (it’s not perfectly spherical) and is roughly 19 km (12 miles) deep. The central peak of the crater rises to 19-25 km (12-16 miles) high, and being more that 160 km (100 miles) wide, it competes with Mars’ Olympus Mons as the largest mountain in the solar system. The debris that was propelled away from Vesta during the impacts made up 1% of its mass, and is now beginning its journey through the solar system. These are known as Vestoids, ranging from sand and gravel all the way up to boulders and smaller asteroids. About 6% of all meteorites that land on Earth are a result of this impact.


The brave new world of 4 Vesta, courtesy of NASA’s Dawn spacecraft. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA

Dawn mapped Vesta’s geology, composition, cratering record and more during its orbit. It also managed to determine the inner structure by measuring its gravitational field. The measurements were consistent with the presence of an iron core of around 225 km (140 miles), in agreement with the size predicted by
howardite-eucrite-diogenite (HED)-based differentiation models. The Dawn mission confirmed that Vesta is the parent body of the HED meteorites, by matching them with lab based measurements. These experiments measured the elemental composition of Vesta’s surface and its specific mineralogy. These results confirm that Vesta experienced pervasive, maybe even global melting, implying that differentiation may be a common history for large planetesimals that condensed before short-lived heat-producing radioactive elements decayed away. The pitted terrains and gullies were found in several young craters. This could be interpreted as evidence of volatile releases and transient water flow. Vesta’s composition is volatile-depleted, so these hydrated materials are likely exogenic (formed on the surface).

A colour coded topographic map from the Dawn mission of the giant asteroid Vesta. Credit: NASA/JPL

The first object ever discovered in the main asteroid belt was Ceres. Named after the Roman goddess of corn and harvest, it was discovered by Italian astronomer Father Giuseppe Piazzi in 1801. Initially classified as a planet, it was later classified as an asteroid as more objects were found in the same region. In recognition of its planet like properties (being very spherical) it was designated a dwarf planet in 2006 along with Pluto and Eris. Observed by the Hubble telescope between 2003 and 2004, it was shown to be nearly spherical, and approximately 940 km (585 miles) wide. Ceres makes up 35% of the mass of the main asteroid belt. Before Dawn there were plenty of signs of water on Ceres. First, its low density indicates that it is 25% ice by mass, which makes it the most water rich body in the inner solar system after Earth (in absolute amount of water). Also, using Hershel in 2012 and 2013, evidence of water vapor, probably produced by ice near the surface transforming from solid to gas (known as sublimating).

Dwarf planet Ceres is shown in these false-color renderings, which highlight differences in surface materials. Credit: NASA/JPL-CalTech/UCLA/MPS/DLR/IDA

Acquiring all the data it needed by the middle of 2016, Dawn measured its global shape, mean density, surface morphology, mineralogy, elemental composition, regional gravity and topography at exceeded resolutions. The imaging from the mission showed a heavily cratered surface with bright features. Often referred to as “bright spots” they are deposits of carbonates and other salts. Multiple measurements showed an abundance of ice at higher latitudes. However the retention of craters up to 275 km (170 miles) in diameter argue for a strong crust, with lots of hydrated salts, rocks and clathrates (molecules trapped in a cage of water molecules). Gravity and topography data also indicated that that Ceres’ internal density increases with depth. This is evidence for internal differentiation resulting from the separation of the dense rock from the low density water-rich phases in Ceres history. The rock settled to form an inner mantle overlain with a water-rich crust. This internal differentiation is typical of small planets like Ceres and Vesta that Sets them apart from asteroids.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

The Items Apollo 11 Left behind on the Moon

Aldrin Looks Back at Tranquility Base
Buzz Aldrin Looks Back at Tranquility Base just after deploying the Early Apollo Scientific Experiments Package (EASEP). Credit: NASA.

July 21st 1969. The time is 2:56 UTC, Neil Armstrong is taking the first steps on the moon, 20 minutes later Buzz Aldrin is following. The landing site looks clean apart from the big lander that is their lift home. By the end of the two hour EVA on the lunar surface the site would be walked over, science experiments laid out, and a pile of rubbish left in a pit. A view you don’t get to see in the images from Apollo 11, the astronauts left over 100 items on the lunar surface. Some commemorative, but mostly items they didn’t need for the return journey.

The plaque
The plaque attached to the lunar lander, with a message from all mankind, just in case some other being finds it. It commemorates the first steps on the Moon. Credit: NASA.

Famously landing in the sea of tranquillity, the Eagle lander has a number of official commemorative items attached to it. The main one is a plaque proclaiming “Here men from planet Earth first set foot upon the Moon. July 1969, A.D. We came in peace for all mankind.” Under the “we come in peace” is a golden replica of an olive branch. Nearby is a small aluminium capsule with a tiny Silicon disc inside. It contained on it messages from four US presidents, and seventy three other heads of state. It was sketched onto it in microscopic lettering, with the wording found here. There are also a few non official items taken there by the astronauts. An Apollo 1 patch in memory of Roger Chaffee, Gus Grissom, and Ed White who died in January 1967 in a fire inside the first Apollo capsule. They also left behind two military medals that belonged to Yuri Gagarin and Vladimir Komarov, both famous USSR cosmonauts. It showed the respect these men had for Soviet cosmonauts who had achieved so many firsts, and went through the same trials and tests they did.

The Apollo 1 patch
The patch for the famous Apollo 1 where Roger Chaffee, Gus Grissom, and Ed White tragically died in a fire. The patch was left on the Moon. Credit: NASA

On top of this they left the science experiments that they had used, such as the passive seismic experiment. The experiment that used meteorite impacts on the surface to map the inside structure of the Moon. They also placed a master reflector so that scientists could measure the distance from Earth precisely. This retroreflector still works, and if you have access to a powerful enough laser you can measure it yourself. They also had to pick up lots of moon rocks and moon dust as part of the science mission. They used sample scoops, scales and even a small hammer. There are also many specific tools that were needed, but were discarded before the return journey.

Map of Tranquillity base
Map of Tranquillity base including the Toss Zone where all the rubbish was discarded. Credit: NASA

Overall they left roughly 106 random bits if rubbish at the launch site. Including lots of tools like the hammers, chisel and brushes needed for sampling; astronaut EVA gear such as the over boots and and life support systems; and actual rubbish like the empty food bags, some armrests they wanted to dispose of; a TV camera; insulation blanket; pins and plastic covers for items like the flag (and the flag itself) plus the urine, defecation and sickness bags, although there is no word on whether they were used. They threw all the items into an area behind the lander known as the “Toss Zone”, basically just a rubbish pit.

Buzz with science
Buzz carrying science experiments to the required place slightly away from tranquility base. Credit: NASA

The astronauts left a surprisingly large amount of stuff on the Moon, but it does make sense, as they needed that weight to be replaced with the 300 kg of Moon rocks that they wanted to bring back, so they just left it all there. There is a full list of the items on this webpage, and its worth a look. Archived by the Lunar Legacy Project, they count it as over 106 items. Depending on how you count it, there can be over 116 items left by the Apollo Astronauts.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.


How the Moon’s Dust Could be Deadly

footprint on the moon
Very famous image of a footprint in the lunar soil, part of the 70mm Hasselblad image collection, you can see the dust and rocks that are classed as mature Regolith, Credit: NASA.

The space industry is changing, improving and looking at places to go. Although Mars is the big target for Elon Musk and SpaceX, revisiting the Moon is a big and real challenge that many are aiming for. Whether it is just getting people back there in a safer and cheaper way than Apollo or if it is companies wanting to design Moon bases, it is an active area of interest. Since the Moon landings over half a century ago, researchers have poured over the moon rocks, and images brought back from the mission. More recently though, researchers are looking at a slightly overlooked factor, lunar dust. They were a problem for the astronauts to landed there in the 60’s/70’s and they may pose a problem to future missions where they may spend weeks or months rather than just a few hours/days. The research below shows how the moon moon affects us when we are there, and how it could be very dangerous.

Harrison Schmitt collects samples
NASA astronaut Harrison Schmitt retrieving lunar samples using a scoop during the Apollo 17 mission in 1972. Credit: NASA.

At time of writing, twelve people have been known to walk on the Moon, all between 1968 and 1972. The longest any group spent on the Moon was the crew of Apollo 17 who spent just over three days there. Sleeping in the Lunar Exploration Module, the astronauts tended to collect lots of dust during the EVA’s (Extravehicular Activity). As the moon has a much lower magnetic field it gets blasted with much more radiation from the sun on the surface.  This electrostatically charges the dust particles making it much more likely to stick to the astronauts spacesuits. This linked with the lower gravity of the Moon means that the particles do not drift to the ground as fast like on Earth. Plus when the dust got into the Spacecraft it had no gravity on the trip home. All these factors meant that the astronauts inhaled lots of lunar dust during the mission.

Lunar dust particle
Fine like powder, but sharp like glass. An image of a lunar dust particle. Credit: NASA/JSC.

On earth, dust tends to be fairly round, eroded over time by wind and water. It is also not only rocks, but biological as well,  On the moon, the dust is just rocky and hasn’t been eroded over time as there is no wind or water. The particles are spikey, abrasive and nasty. All twelve of the people who landed on the moon suffered with what NASA astronaut Harrison Schmitt described as “lunar hay fever”. They had symptoms like sneezing, nasal congestion and often they took time to fade. Most people know that the astronauts describe the dust as smelling like burnt gunpowder, but don’t know that it made them quite ill. Even the astronauts themselves might not have known the true reasoning behind the illness. Part of the reason is that the lunar dust has silicate in it, often found on planetary bodies with volcanic activity. As well as making the astronauts ill, it was so abrasive that it ate away at layers in the spacesuit boots, and destroyed vacuum seals on sample containers.

Eugene Cernan Hay fever
NASA astronaut Eugene Cernan inside the lunar module, still on the moon after his second moonwalk of Apollo 17. With spacesuit covered in lunar dust he complained of hay fever like symptoms. Credit: NASA.

One study by Stony Brook University School of Medicine, NY looked into the toxicity and DNA damage as a result of exposure to Lunar dust. They attempted to mimic the effect of lunar regolith (the dust) on mammalian cells. They took lung and neuronal cells and then exposed them to materials processed to mimic lunar dust so they could assess survival and genotoxicity. They showed that the soil can cause death to some cells and DNA damage in both neuronal and lung cell lines. Certain forms of the dust had more effect than others, but it was shown that depending on conditions, lunar soil can be cytotoxic (toxic to living cells) and genotoxic (damages genetic information) to both neuronal cells and lung cells. Testing was done by cultures and not tested on real people or animals. Kim Prisk, a pulmonary physiologist from the University of California with over 20 years of experience in human spaceflight is taking part in similar research as Part of an ESA research program. She mentions that “Particles 50 times smaller than a human hair can hang around for months inside your lungs. The longer the particle stays, the greater the chance for toxic effects”. ESA make simulated moon dust from a volcanic region in Germany. See their post on Lunar dust here.

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.