JAXA Lands Rovers on an Asteroid

An artist’s impression of the Hayabusa 2 probe. Targeting an asteroid, it plans to land, sample it and then return with the sample by 2020.

The Japanese Space Agency have successfully landed and deployed two small rovers onto the surface of a near Earth asteroid from the Hayabusa 2 probe. Following on from its predecessor Hayabusa, this second mission is an asteroid sample return mission, building on and addressing the weak points of the first mission. It launched on the 3rd of December 2014, and it rendezvoused with the near-earth asteroid 162173 Ryugu on the 27th of June 2018. Currently in the process of surveying the asteroid for a year and a half, it will depart in December 2019, returning to Earth in December 2020.

Photo taken by Rover-1B on Sept 21 at ~13:07 JST. It was captured just after separation from the spacecraft. Ryugu’s surface is in the lower right. The misty top left region is due to the reflection of sunlight. 1B seems to rotate slowly after separation, minimising image blur. Credit: JAXA

The Hayabusa probe carries four small rovers that are designed to investigate the asteroid surface in situ. They are designed to provide data and context of the environment around where the returned samples are from. Different from rovers that we are used to, these all use a hopping mechanism to get around. None of the rovers have wheels as there is so little gravity that they would be very inefficient. Deployed at different dates, they are all dropped onto the surface from 60-80 m altitude and fall to the surface by the very weak gravity. The MINERVA-II-1 lander is the container that deployed two of the rovers. ROVER-1A and ROVER-1B were deployed on 21st of September 2018. Developed by JAXA and the University of Aizu, the rovers are identical. They are 18cm in diameter and 7cm tall, with a mass of 1.1kg (2.4lb) each. They hop by using rotational masses within the rover. They have stereo cameras, a wide angle camera, and thermometers aboard. Solar power and a double layer capacitor power them.

First pictures from a MINERVA-II-1 rover that landed on the asteroid. Credit: JAXA.

The  MINERVA-II-2 container holds the ROVER-2, developed by a consortium of universities led by Tokyo University. It is an octagonal prism shape, 15cm diameter and 16cm tall. The mass is about 1kg (2.2lb), and has two cameras, a thermometer and an accelerometer on board. It has optical and UV LED’s for illumination to detect floating dust particles. It has four mechanisms to hop and relocate. The fourth rover, named MASCOT (Mobile Asteroid Surface Scout) was developed by the German Aerospace Center in cooperation with the French Space Agency CNES. It measures 29.5cm x 27.5 cm x 19.5cm and has a mass of 9.6kg (21lb). It carries an infrared spectrometer, a magnetometer, a radiometer and a camera that will image the small-scale structure, distribution and texture of regolith. it is capable of tumbling to re-position itself, and is designed to measure the mineralogical composition, the thermal behavior and magnetic properties of the asteroid. The non-rechargeable battery will only last for 16 hours. The infrared radiometer on the InSight Mars lander, launched in 2018, is based on the MASCOT radiometer.

An artistic rendering of Hyabusa 2 collecting a surface sample.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

Delta II Launch Site Demolished

Delta II launch
The launch of the GRAIL mission from Launch Complex 17 by a Delta II. The final launch from SLC-17. Credit: NASA/Tom Farrar and Tony Gray

At 11:00 UTC on the 12th of July 2018 the two launch towers of Space Launch Complex 17 were demolished by controlled explosions. The crowd of onlookers cheered as the towers fell, and took some great images and videos of the demolition. The launch site had not been used since 2011 when Delta II 7920H-10C fired NASA’s GRAIL spacecraft towards the Moon. The launch complex had two pads named 17A and 17B. The site is now to be reused as a test bed for potential lunar landers made by Moon Express. Boasting some very prestigious missions well beyond Earth SLC-17 will be remembered as an important part of the history of American space.

Delta Echo 1
A delta Rocket carrying NASA’s Echo 1 satellite launching August 12th 1960. The Echo satellite inflated in orbit to reflect signals back to Earth. Credit: NASA.

It was built in 1956 for use as a launch site for the PGM-17 Thor missile. This was the first operational ballistic missile that the United States had in their arsenal. The first launch of a Thor missile from 17A was 3rd of August 1957, with the first launch from 17B being 25th of January 1957. In the early 1960s the site was upgraded to support a variety of Expendable Launch Vehicles, all of which were derived in some way from the Thor booster. We now know this family of rockets as the Delta rockets used by the United Launch Alliance. Thirty five early Delta rocket missions were launched from LC-17 between 1960 and 1965. At that point operated by the US Air Force. In 1965 the operation of the site was transferred to NASA.

View of LC-17
View of LC-17 viewing East. A fairly old photo taken by the U.S. Army Corps of Engineers. Credit: Martin Stupich

In 1988 the site was returned to the Air Force to support the Delta II program. The site had to be modified to facilitate the new more powerful rocket, with new platforms being installed and the D=Ground Service Tower was raised by 10 ft. The program entered service in 1989 after worries about the shuttle due to the Challenger disaster. Pad 17B was modified in 1997 to support a newer more powerful launch vehicle the Delta III which made its maiden flight on 26th of August 1998. Ending in failure, the next three attempts were failures in some sense and the programme was abandoned in late 2000. The Delta II continued to launch, with it’s fairly cheap price tag, and amazing track record it has been a favourite for NASA on a number of big projects. This post by NASA explains how the layout of the site and the small teams allowed LC-17 to be efficient and consistent over it’s 50 year lifespan. Some Delta II launches could be within days of each other because the launch crews were so effective.

Space Launch Complex 17
A view of Space Launch Complex 17, pads A and B taken in 2007. Delta II rocket with THEMIS aboard sits on Pad B. Credit: NASA/George Shelton

There have been some very famous spacecraft launched from SLC-17 in the years, mostly by Delta I and II rockets. Among them the Explorer and Pioneer space probes studying the physics of our solar system, and exploring some of it. All of the Orbiting Solar Observatories between 1962 and 1975 were launched from this site, as well as the Solar Maximum mission in 1980. Some of the first weather satellites like TIROS and later GOES were launched from SLC-17 allowing much better understanding of weather and improving (mainly military) weather reports. My personal favourite launches are those of the Mars Exploration Rovers in 2003. Both spirit and Opportunity (still going) were launched from this important launch site.

Spirit lifting off
A Delta II launching from pad SLC-17A with the MER-A or Spirit Rover towards Mars on June 10th 2003. Credit: NASA/KSC

Space Launch Complex 17 is also famous for being the last site where you had to press a button to launch the rocket. Most pads had a computerized auto-sequencer, much like the space shuttle, and in the modern world of rocketry it makes much more sense to do that. Even after 1995 when they got rid of the button (sadly) a human needed to press go on a computer to say launch. Bill Hodge, an electrical engineer at the launch complex said “If you didn’t push that button, it didn’t launch.” Tom Mahaney, project manager for the closeout of the complex described the site as “hectic, but not dysfunctional.” This is the best description I can find of this massively important historical site. In its time it has supported a total of 325 Thor and Delta rocket launches!

Thank you for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.