The Space Missions of 2018

2018 has definitely been a big year for space, and space exploration. I have managed to capture a few of the great moments like the launch of InSight, JAXA landing rovers on an asteroid, and the launch of the Parker Probe. There have been a few others that are notable mentions, and that is the point of this post, to talk about some great launched missions, and others that have finished their jobs, purposely or forced.


The British built Bepicolombo launched in October 20th, to begin its 7 year journey to visit Mercury. Currently one of the least explored planets in the solar system, Bepicolombo intends to change that. When it arrives in late 2025 it will endure temperatures of over 350 °C, and be there for at least a year, possibly for twice that. It is made up of two spacecraft, the Mercury Planet Orbiter (MPO) lead by ESA, and the Mercury Magnetospheric Orbiter (MMO) lead by JAXA. The aim is to measure the composition, atmosphere and magnetosphere of Mercury to understand its history. This could lead to understanding more about how other planets such as Earth formed. BepiColombo is named after Professor Giuseppe (Bepi) Colombo (1920-1984) from the University of Padua, Italy. He made big leaps in understanding Mercury, and suggested to NASA how to use a gravity-assist swing-by of Venus to place Mariner 10 into a solar orbit of Mercury.

Bepicolombo artists impression
Artist’s impression of the BepiColombo spacecraft in cruise configuration. The Mercury Transfer Module is at the bottom. The Mercury Planetary Orbiter is in the middle. The Mercury Magnetospheric Orbiter sits inside the sunshield, visible at the top. Credit: ESA/ATG medialab


Back in May I posted about how an Atlas V had just lifted the Mars Insight lander. In late November the $814 million lander it reached its target of the Elysium Planitia region of Mars, landing safely. The aim is for it investigate how the processes that shaped all the inner rocky planets more than 4 billion years ago worked. It uses two seismometers (one of which built by RAL space in the UK) and a number of other instruments to study the crust, mantle and core of the red planet. It works by measuring how much the area shakes when asteroids hit the planet. Also measuring the heat flow and precision tracking it is getting a glimpse of Mars we have yet to see. The launch also allowed for two cubesats, MarCO-A and MarCO-B to be the first to be launched into deep space. The first test of miniaturised cubesat technology being used on another planet. This mission will be one to watch for the near future.

There’s a quiet beauty here. Looking forward to exploring my new home. #MarsLanding— NASA InSight (@NASAInSight) November 27, 2018


A bit sadder news is the end of the Kepler space telescope after 9 years service. It has collected a huge amount of data in its lifetime, finding the night sky is filled with billions of hidden planets, more planets than stars. This may seem obvious but is not easy to prove. During its time the planet hunter has found evidence of more than 2,600 planets outside our solar system, and left hints at many more, paving the way for future planet hunters and getting good engineering data on what works and what doesn’t. Telescopes such as ARIEL which will launch in the net decade will have better design due to Kepler. The space telescope had been running low on fuel for months, and struggled to point the correct way. After the 4 year mission it continued to work a different mission named K2. In October it was officially declared dead, left in orbit as it may have been dangerous for it to enter the atmosphere.

The Kepler Space Telescope mission, by the numbers
The Kepler Space Telescope mission, by the numbers. Credit: NASA/Ames/Wendy Stenzel

Parker Solar Probe

Back in august I wrote about the classic Delta IV heavy launching with the Parker Solar Probe aboard. The aim is to get closer to the sun than previously possible. Over the next seven years the probe will make 24 close approaches to the sun, with the aim of eventually getting within 3.8 million miles of the surface. The previous record (that Parker has now broken) was 26.6 million miles, set in 1976. It will revolutionise our understanding of the sun, and how the changing conditions can affect the solar system. It will use Venus’ gravity to slowly get closer to the sun. As a reference, we are 93 million miles away from the sun. It will eventually fly through the sun’s outer atmosphere, known as the Corona for the first time, getting brand new, in situ measurements. The spacecraft has a 4.5 inch thick carbon composite shield to protect it from the heat and radiation. The temperatures will reach over 1300 C.

Parker Solar Probe in the Fairing
Parker Solar Probe in the Fairing, ready to be put on the rocket in the clean room. Credit: NASA/Johns Hopkins APL/Ed Whitman


Back in April I posted about the launch of the TESS exoplanet hunter by a Falcon 9. I have already talked about exoplanets and planet hunters, and this is a big part of that plan. TESS stands for Transiting Exoplanet Surveying Satellite, and it does what it says on the tin, it is surveying the sky for potential exoplanets. Basically it is looking for exoplanets that could harbour life. The expectation is that it will catalog thousands of planet candidates and vastly increase the known number of exoplanets. Approximately 300 are expected to be Earth-sized and super-Earth-sized exoplanets that can then use the future more complex telescopes such as JWST to look at in more detail. The satellite will look at the sky for two years by breaking it up into 26 sections, and looking at each one for 27 days at a time. Unlike Kepler and K2 TESS will be looking at brighter stars, meaning ground based observatories can corroborate the observations.

the TESS telescope
The TESS satellite before launch, the four cameras can be seen on the top of the spacecraft; Credit: NASA.


In September I posted about the Dawn spacecraft and the rise of Ion Engines. With the loss of the Dawn mission around the same time as Kepler, they ran out of fuel within two days of each other. The 11 year Dawn mission racked up a few very important records. It is the first spacecraft to orbit two different celestial bodies, and the first to orbit any object in the main asteroid belt between Mars and Jupiter. It is also a record breaker for electric speed. Travelling over 25,700 mph. Visiting Ceres and Vesta, it found out some very important scientific data that tells us a huge amount about the formation of our solar system. With a large proportion of the meteorites hitting Earth coming from these two bodies, Dawn showed the difference between the potential dwarf planets. One of the early uses of ion engines, it also showed the potential of the efficient form of travel, and now many more satellites are using them.

Dawn prior to encapsulation at its launch pad on July 1, 2007. Credit: NASA/Amanda Diller

Mars Rovers

This is a mixed bag, we have already had great news about the InSight lander, with it recording sounds of Martian winds, the rovers also have big news this year. In June the Curiosity rover found Organic matter in the Martian soil. The samples, taken from 3 billion year old mudstone contained complex hydrocarbons. This along with its detection of methane changes in the atmosphere are one step along the way to finding evidence of life on other planets. There have also been many more photos from the red planet, with Curiosity taking a few more selfies. See here how the car sized rover achieves the great pictures. On the other side of it there was a huge Martian storm that may have killed the Opportunity rover by covering the solar panels in dust. Although there are still hopes the rover can start communications again, we will have to see.

Curiosity in a dust storm
An image shared by Seán Doran on Sunday of the Mars Curiosity in the middle of a dust storm reported to cover an area the size of the US and Russia Combined. CredIt: NASA/JPL/Seán Doran.

Asteroid Rovers

In late september, another great story came out, that JAXA (the Japanese space agency) successfully landed a number of rovers on an asteroid. Still to launch all of the four onto the surface, there are already great images from the surface of an asteroid. The little rovers use a hopping mechanism to get around, as the gravity on the asteroid is so small a wheeled rover just wouldn’t work. The spacecraft will also be attempting to collect samples to return to Earth in the coming years. The Hayabusa 2 probe is a follow up to the Hayabusa probe which was not a sample return. The second launched on December 3rd 2014 and rendezvoused with the near-earth asteroid 162173 Ryugu on the 27th of June 2018. Currently in the process of surveying the asteroid for a year and a half, it will depart in December 2019, returning to Earth in December 2020.

First pictures from a MINERVA-II-1 rover that landed on the asteroid. Credit: JAXA.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on. Most of all, thank you for taking the time to read my posts this year! So all have a Happy New Year, and here’s to a great 2019 in space!

Follow @TheIndieG
Tweet to @TheIndieG

The Exoplanet Hunter TESS Launched by Falcon 9

TESS taking off
The Falcon 9 taking off from SLC-40 at Cape Canaveral with TESS on board. Credit: SpaceX Flickr.

On April 18th, 2018 at 22:51 UTC a Falcon 9 took off from Launch Complex 40 at Cape Canaveral AFB. Aboard was NASA’s latest research satellite TESS. A mission that cost $337 million, Transiting Exoplanet Survey Satellite (TESS)  is the latest in a line of space based observatories that are set to launch this decade. Launched into an arching elliptical orbit that will take the spacecraft over two thirds of the distance to the moon. The first stage of the Falcon 9 landed on the autonomous drone ship Of Course I Still Love You to be refurbished and reused.

falcon 9 engines
The sheer power of the Falcon 9’s nine Merlin 1D engines produce an awesome inferno. You can clearly see the 45 written on the side as the booster designator. Credit @marcuscotephoto on Twitter.

After a 5 day checkout of the spacecraft, basically a hardware check, the ground controllers will switch on the TESS cameras. TESS is designed to scan around 85% of the sky during the two year mission, with astronomers estimating as many as 20,000 new planets could be found. It plans to build on discoveries made by NASA’s Kepler telescope which was launched in 2009 to find earth like planets. TESS carries four 16.8-megapixel cameras, and will look for dips in light coming from 200,000 preselected nearby stars. The four cameras cover a square in the sky that measures 24 x 24 degrees, wide enough to fit the Orion constellation into a single camera. the cameras together study a set area of sky for 27 days before staring at the next section.

TESS orbit
An illustration of the orbits that TESS will go through to get to the final orbit P/2. Credit: NASA.

The orbit TESS is being launched into is known as P/2, and requires time and finesse to reach. TESS will slingshot by the moon at a distance of around 5,000 miles (8,000 kilometers), using gravity to reshape its orbit, increasing the satellite’s orbital perigee, or low point, to the final planned altitude of around 67,000 miles. After the lunar flyby, the high point of the satellite’s elongated orbit will stretch well beyond the moon, and another thruster firing will nudge TESS into its final orbit in mid-June. Science data is planned to start in july, with the first year of the two year campaign aimed at the stars in the southern sky. TESS has been built to have enough fuel to last 20 or 30 years, assuming funding by NASA and the components on board continue to function correctly.

the TESS telescope
The TESS satellite before launch, the four cameras can be seen on the top of the spacecraft; Credit: NASA.

Each of TESS’s cameras have four custom built re-sensitive CCD sensors designed and developed by MIT’s Lincoln Laboratory. The sensors are claimed to be the most perfect CCD’s ever flown by a science mission. The lenses used by the cameras are only about 4 inches (10mm) wide, meaning it has a fairly low light collecting power compared to other space telescopes. The James Webb Space Telescope for example launching in 2020 had a 21.3ft (6.5m) primary mirror, although the satellite has cost over $8 billion to make. TESS is a bit like a finder telescope, it will lay a bedrock for future missions such as Webb and ground based observatories to make better readings. It gives a good idea of the best places to look, where the most likely exoplanets are.

launch of TESS
The Falcon 9 launching the Transiting Exoplanet Survey Satellite to an orbit of P/2. Credit: SpaceX Flickr.

TESS works by looking at a star, in this case mainly M-dwarf stars, which are cooler than our sun. They are also known as red dwarfs and make up most of the stars in our galaxy. When a planet goes in front of the star the light received by TESS “dips” and changes slightly in colour. This change in the light it receives can tell scientists alot about the size of a planet, and other things like density and velocity. They expect TESS to find between 500 and 1,000 planets that are between one and three times the size of Earth, and 20,000 planets the size of Neptune or Jupiter. The readings will give a good idea of where to focus on and ‘follow up’ on future missions. Then missions such as JWST can probe and use more complex tools to find information such as atmospheric composition, and whether they could be habitable.

long exposure TESS
A long exposure of the Falcon 9 taking off over the SpaceX hangar at Cape Canaveral. Credit: SpaceX Flickr.

The Falcon 9 used was a v1.2 with designation F9-54. It used a brand new “Block 4” first stage. The booster designated B1045 has a clear 45 written on the side in some of the close up booster images. The fist stage boosted for 2 minutes and 29 seconds, then detaching and slowing itself down. The booster landed downrange on the autonomous drone ship “Of Course I Still Love You”. The first successful drone ship landing since October 2017. A total of 24 Falcon 9 or Falcon Heavy booster stages have now been recovered in 30 attempts. Four of which were on “Just Read The Instructions” off the coast of California, ten at Cape Canaveral Landing Zone 1 and 2, and nine on the autonomous drone ship “Of Course I Still Love You” off the Florida Coast. 18 first stages have been recovered, 11 of which have flown twice, five have been lost during their second flight. B1045 was the last brand new “Block 4” Falcon 9 booster.

TESS taking off
An awesome photo of a Falcon 9 taking off from across the water, a perfect day for pictures! Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit