Delta 4 Medium Makes Penultimate Launch

John Kraus photos
A great image taken by John Kraus of the Delta 4’s main booster and four smaller boosters, and the awesome power they produce. Visit his patreon to find more! Credit: John Kraus

Just after midnight, 00:23 UTC on March 16th 2019, a Delta 4 medium rocket placed a US military network relay satellite into orbit. Launching from Space Launch Complex 37B at Cape Canaveral AFB in Florida, the 66 meter tall Delta 4 is nearing retirement, with this being its second to last launch. After several technical issues, the ground teams eventually got the rocket and the satellite tracking network functioning correctly. The hydrogen fueled RS-68A main engine ignited moments before liftoff for 5 seconds before the hold down bolts released at T-0, firing away with 1.8 million pounds of thrust. This mission has extended ULA’s streak of successful missions to 133 since its inception in 2006.

Marcus Cote
Maybe the photo of the night by Marcus Cote, showing the huge exhaust plume created by the Delta 4 in 5, 4 configuration. Credit: Marcus Cote
marcus cote
A great time lapse of the Delta 4 launching WGS10 satellite into a geostationary orbit. Credit: Marcus Cote.

The rocket veered towards an easterly direction over the Atlantic Ocean, aiming to place the communications satellite to its final operating position 36,000 km (22,000 miles) above the equator in geostationary orbit. The solid rocket boosters burned out and were jettisoned in pairs roughly 1 minute and 40 seconds into flight. The main engine continued to fly on until 4 minutes in when the first stage was cut off, and then released shortly after. The first stage then fell back to Earth into the Atlantic Ocean. The upper stage was powered by a RL10B-2 engine, made by Aerojet Rocketdyne, the same manufacturers of the main engine. The upper stage engine ignited twice to push the satellite into an elliptical transfer orbit. The satellite separated from the second stage at T+36 minutes 50 seconds.

ULA
An image showing the scary power of the rocket boosters at liftoff, the rocket firing 1.8 million pounds of thrust into the ground trying to escape the Earth. Credit: ULA.

On board was the WGS 10 military communications satellite. It is a 6000kg (13,200 lb) broadband satellite, that is joining nine others that have been slowly placed in orbit since 2007. The idea is to form a globe spanning network that can relay video, data and other useful information between the battlefield and the headquarters, wherever they may be. The WGS fleet transmits both classified and unclassified information, and supports the US and its allies. On board is a digital channelizer that allows the satellite to relay signals using high data-rate X-band and Ka-band frequencies during its 14 year expected life. All of the WGS satellites were launched on ULA rockets, with the first two on Atlas V’s and all the rest on Delta 4’s. This mission had an estimated price tag of $400 million.

Glen Davis
An almost artistic image of the Delta 4 medium launching. Heavily edited, but still capturing that raw power. Credit: Glen Davis

Marking the second to last flight of the Delta 4 Medium variant rocket, it is noticeable as only having a single first stage core, whereas the Delta 4 Heavy has three. ULA are retiring certain areas of their launch family as they plan to debut the new Vulcan booster soon which will apparently be cheaper than their current offering. The decision to halt selling of the Delta 4 medium flight was made in 2014, but this and the next launch were already on the books at that time. The Delta 4 medium is apparently more expensive than the Atlas V launcher, but with a similar launch capability, leading to the reason for retirement. ULA described it as it being cheaper to run a few launchers more frequently than many launchers sporadically. The bigger Delta 4 heavy will continue to launch heavier payloads well into the mid 2020’s. Another reason for keeping the Delta 4 Medium was to allow the US military to have two choices to launch their payloads, that and the Atlas V. Now that the Falcon 9 is cleared to fly military satellites there is less need for the Delta variant.

marcus cote
The Delta 4 sitting on the pad, ready to launch the WGS10 satellite. Taken close up by Marcus cote the day before when setting up the remote cameras for the launch. Credit: Marcus Cote.
mike seely
A behind the scenes photo of setting up cameras before the launch. Credit: Mike Seeley.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

Atlas 5 Launches a Trio of Spy Satellites

Atlas 5 taking off
Atlas 5 lifting off from pad 41 at Cape Canaveral Air Force Base. Credit: @marcuscotephoto on Twitter

At 23.13 UTC on April 14th 2018 the third Atlas 5 launch of the year fired multiple military satellites into a near geosynchronous orbit. Launching from Space Launch Complex 41 at Cape Canaveral, FL,  the AV-079 (the launch designation) was an Atlas V in 551 configuration. The rocket had 5 solid rocket motors, a Centaur second stage powered by a single RL10C-1 LOX/LH2 engine, and a 5m diameter payload fairing. The entire mission lasted approximately 7 hours and is known as Air Force Space Command (AFSPC) 11 mission.

The Atlas 5 AFSPC11
The Atlas V carrying AFSPC11 for the Air Force Space Command. Credit: United Launch Alliance Flickr.

the smoke trail
A smoke trail left by the Atlas V as it launches a trio of spy satellites. Credit: @marcuscotephoto on twitter.

The mission lifted two primary satellites for the Air Force, one stacked on top of the other. On the top was CBAS (Continuous Broadcast Augmenting SATCOM) an abbreviation within an abbreviation, and a military communications satellite. The second satellite was named EAGLE (ESPA Augmented GEO Laboratory Experiment) which is an abbreviation with two abbreviations in it! This satellite is based on an Orbital ATK ESPA bus, it is a research laboratory that can host 6 deployable payloads. It is said that EAGLE likely weighed around 780 kg. There was also a subsatellite named “Mycroft” reported to be on the flight, but not confirmed.

The fury of the Atlas V
The fury of the 5 solid rocket boosters found on this Atlas V. Credit: United Launch Alliance Flickr.

The Solid motors finished their burn and seperated 1 minute and 47 seconds after liftoff. The first stage,  an RD-180 rocket fired for 4 minutes and 33.5 seconds. Centaur then performed 3 burns which were not shown on the livestream. The first burn was meant to last 6 minutes 1 seconds to reach a low earth parking orbit. The second burn began 12 minutes and 6 seconds after the first cutoff, and last 4 minutes and 49 seconds, putting the vehicle into a geosynchronous transfer orbit. After a 5 hour and 6 minute apogee, a third burn of 2 minutes and 36 seconds completed the insertion to the planned orbit. A spacecraft separation extended for another 1 and a half hours to T+6 hours 57 min 24 sec.

Atlas v launchpad
Atlas V rolling to the launchpad at Space Launch Complex 41 at Cape Canaveral AFB. Credit: United Launch Alliance Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

The Latest Atlas V Launch GOES-S Well

The Atlas V launch
The Atlas V launch taken by @marcuscotephoto on twitter.

At 22:02 UTC on March 1st 2018 the Second Atlas V launch of 2018 fired the 5,192kg GOES-S satellite into orbit. Launching from Space Launch Complex 41 at Cape Canaveral, FL, the AV-077 (the launch designation) was an Atlas V in 541  configuration. GOES-S, an A2100 series satellite built by Lockheed Martin, was separated 3.5 hours into the mission into a 8,215km x 35,286km x 9.52 deg Geosynchronous Transfer Orbit (GTO).

Atlas V launch
Atlas V launch from Launch Complex 41 at Cape Canaveral, FL. Image from @NOAASatellites Twitter.

The second of a new generation of weather satellites for the United States, GOES-S follows in the footsteps of GOES-East, now renamed to GOES-16. A huge jump in satellite capability, the new set of satellites cover from eastern Japan all the way over to west Africa, as well as parts of the Arctic and Antarctic. They can detect storms faster, see lightning and even have sensors to detect solar storms. The satellites were commissioned by the National Environmental Satellite, Data and Information Service (NESDIS) who manage the National Oceanographic and Atmospheric Administration (NOAA) constellation of environmental satellites. For more images and information follow them on twitter @NOAASatellites.

The new generation of weather satellites
Image showing the difference between GOES-16 and the previous version, GOES-13. Image from @NOASatellites twitter.

There are versions of the livestream on Youtube, and a highlight reel on the ULA Youtube page. They are definitely worth a watch if you want more information from the engineers themselves.

Atlas V launch
Atlas V launching the GOES-S satellite on March 1st 2018. Image from @NOAASatellites Twitter

The Atlas V just taking off
The Atlas V just taking off, Image from @NOAASatellites

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com