The Crew Dragon Flies

Crew Demo landing

This weekend a very important event happened, something many rocket enthusiasts have been waiting for. The first capsule designed to hold commercial crew was launched by SpaceX. A successful launch, the Falcon 9 carrying the first crew Dragon lifted off from pad 39A at the Kennedy Space Centre, Cape Canaveral, FL on the 2nd of March 2019 at 07:49 UTC. This was the first orbital test of the Dragon capsule, and although it was unmanned, it did hold a dummy test astronaut nicknamed Ripley, after the heroine from Alien.

loading the rocket
The modified Falcon 9 being rolled out towards the launch pad on the specially designed trailer. Credit: SpaceX
Crew Dragon
A close up side on view of the Crew Dragon while it it waiting to be loaded. Credit: SpaceX

The capsule was launched on top of the 70m tall Falcon 9 that had minor changes to work with NASA’s strict requirements for commercial crew. Trailing off in a north easterly direction, the Dragon capsule sailed on a 27 hour autonomous route towards the International Space Station. The capsule itself is 16ft tall, and 13ft in diameter, and is designed to be able to hold 7 people in relative comfort (compared to the previous equivalents). This capsule sits on top of a trunk that could contain some cargo on future trips. The capsule is 12ft tall, 12ft in diameter, and coated in solar arrays. The cargo section is not designed to survive a journey back to Earth, with the heat shield and thermal protection system being on the capsule itself.

John Kraus Photos
A great long exposure shot of the Crew Demo launching, taken from Merritt Island. FL. Credit: John Kraus Photography. Click on the photo and buy one of his rocket prints!

The first stage of the Falcon 9 powered through the thick lower atmosphere for about 2 and a half minutes before shutting down and separating. The booster B1051.1 was brand new, performing landing burns on its way back through the atmosphere to come back and land successfully on the autonomous drone ship “Of Course I Still Love You”. The landing was particularly rough with choppy seas out in the Atlantic that day. The booster did not manage to hit right on the X on the pad, but was still stood up when it returned to port Canaveral. This was a big moment as it is now the 35th successful booster recovery. Just a minute after the first stage landed the second stage engine cut-off. A few moments later the Crew Dragon was released from the second stage to begin the 27 hour journey to the ISS.

landscape
A landscape view of the launchpad 39A at Cape Canaveral, with the first commercial crew mission on board the Falcon 9. Credit: Marcus Cote Photography. Click the image and go buy one of his prints!

The 400lb capsule glided to an automated docking early on Sunday morning, completing one of the major milestones of the mission. Aided by a laser rangefinder and a thermal camera the Dragon capsule approached the space station and linked with the docking port on the forward end of the complex at 10:51 UTC. This is now the first privately owned human rated spaceship to reach the ISS. The link up happened at over 400km over the northern end of New Zealand during what is known as orbital night time. The capsule first held back at around 60 m from the station, testing radio links. When given the go ahead it then moved towards the ISS at 10cm per second or 0.2mph. The capsule actually arrived 9 minutes ahead of schedule when the latches engaged to create a connection with the International docking adapter.

Crew Dragon
The Crew Dragon moving slowly towards the ISS. Credit: NASA

The station docking adaptor was installed over the old space shuttle docking port, at the forward end of the Harmony module. The arrival marks the first time a visiting spaceship has docked there since the last flight of the shuttle Atlantis in 2011. Once docked 12 hooks closed to forma firm mechanical connection, and then two umbilical lines were attached by robotic arms to allow the stations electrical system to power the Dragon module during the stay. After a number of checks, Saint-Jacques opened the crew Dragons hatch, becoming the first person to board the ship. The crew wore face masks when entering the Dragon, as they would with any other visiting spacecraft, for precaution. Once the capsule was given the all clear the crew removed their masks and unloaded the 100 lb of cargo stowed under the seats. On board the Dragon was a small stuffed toy in the shape of Earth, made by Celestial Buddies. NASA astronaut Anne McClain quickly picked it up and made a video with it. Celestial buddies were unaware that they would have one of their toys would be going on a mission, and they are therefore sold out for now, but they have some great other toys on offer instead.

Crew Dragon
A closer view of the Crew Dragon, just moments bore docking. Credit: NASA
long exposure of the Falcon 9
A 277 second exposure of the Falcon 9 launching from LC-39A, so long that it shows the separation of the first stage. Credit: Mike Seeley.

The Crew Dragon will depart the space station early on Friday at 07:31 UTC, followed by a de-orbit burn at 12:50 UTC. The spacecraft jettisons the unpressurised trunk section, with the solar panels and radiator, what will burn up in the atmosphere. The heat shield on the Crew dragon will then protect it as it comes into the atmosphere from a northwest to southeast direction. Aiming for a splashdown under the four parachutes somewhere in the Atlantic Ocean, east of Cape Canaveral at 13:45 UTC. The next big test for the Crew Dragon will be a launch where the launch escape system is tested. Designed to push the capsule away from the rocket if there is a major failure, that launch will be in late June of 2019 if all goes well. The first crewed mission is planned for July this year.

A great image turned into a poster from the rocket launch, with an emotive quote by Elon Musk. Credit: Erik Kuna.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

The First Launch of a Commercial Lunar Lander

Marcus Cote Photo
A Falcon 9 lights up the sky above the Space Coast for the first time in 2019. Here’s a long exposure from 321 Boat Club in Melbourne, Florida. Credit: @marcuscotephoto

At 01:45 UTC on February the 22nd 2019 an already flown Falcon 9 was the first SpaceX rocket flown from the Cape in 2019. Launching from SLC-40 in Cape Canaveral, FL, the 70 metre high rocket flew three satellites into space. On board was an Indonesian communications satellite, a privately funded Israeli moon lander and an experimental space surveillance satellite for the US Air Force. The Falcon 9 first stage booster successfully landed back on Earth for a third time, landing on the autonomous drone ship “Of Course I Still Love You”.

SpaceX launch
A shot of the Falcon 9 launching from SLC-40 at Cape Canaveral with 3 satellites on board. Credit: SpaceX.

The Israeli moon lander is the first of its kind, attempting to be the first privately funded mission to the Moon. It was also the first to separate from the rocket at 33 minutes after liftoff. Within minutes of separation the spacecraft opened its four landing legs and radioed ground control with a status report. At 585 kg at launch it is not especially heavy for a spacecraft, and not the heaviest on board, but without fuel it would only be 150 kg. It is roughly 2m in diameter and 1.5 m tall with the landing legs extended. It is named Beresheet after the Hebrew title of the biblical book of Genesis. After several orbits of the Earth the spacecraft will begin to slowly raise its orbit with the on board thrusters. The process will take roughly 7 weeks to reach the Moon’s area of gravitational influence. At that point the spacecraft will perform manoeuvres to be captured into a lunar orbit, staying there for between two weeks and a month. When in the correct orbit, it will attempt a soft landing on the surface, aiming at the northern end of Mare Serenitatis. The landing zone is a circle of about 15 km.

SpaceIL co-founders Kfir Damari, Yonatan Winetraub and Yariv Bash insert a time capsule on the Beresheet spacecraft. Credit: SpaceIL
spacex launch
Great view of the 9 engined, 70m rocket launching from the Cape in late February. Credit: SpaceX

The aim of the Moon lander, beyond being the first commercial lander, is to measure the Moon’s local magnetic field to help understand how it formed in the early solar system. To do this it has an on board magnetometer, made by the Weizmann Institute of Science. It also has a laser retroreflector array payload provided by NASA Goddard Space Flight Center. This is a device that will reflect a laser back the direction that it came from. The Apollo astronauts installed a similar device that is still used today to measure the distance the Moon is from Earth at any one time. You do need a very powerful laser to achieve this though. With minimal science instruments the spacecraft is not designed to last long on the surface. It has no thermal control so is expected to quickly overheat when functioning. It therefore has an expected life of just two days after landing on the surface. The craft also has a digital time capsule that contains over 30 million pages of data, including a full copy of the Bible, English-language Wikipedia, many children’s drawings, memories of a Holocaust survivor, Israel’s national anthem, the Israeli flag and a copy of the Israeli Declaration of Independence.

rocket landing
The Falcon 9 rocket’s first stage lands on SpaceX’s drone ship “Of Course I Still Love You.” Credit: SpaceX

Made as a competitor for the Google Lunar X prize, Beresheet is made by SpaceIL. They are a non-profit, and have reportedly produced the mission for less than $100 million, which is extraordinarily cheap for this kind of mission. This is going to be the first private interplanetary mission that’s going to go to the moon,” said Yonatan Winetraub, a co-founder of SpaceIL, which had its origin in a brainstorming meeting in a Tel Aviv bar. “This is a big milestone. This is going to be the first time that it’s not going to be a superpower that’s going to go to the moon. This is a huge step for Israel.

“Until today, three superpowers have soft landed on the moon — the United States, the Soviet Union and recently, China,” . “And (we) thought it’s about time for a change. We want to get little Israel all the way to the moon. This is the purpose of SpaceIL.”


Winetraub, in a news conference
long exposure launch
Long exposure of the launch from across the water. Credit: SpaceX

The Indonesian Nusantara Satu communications satellite was by far the heaviest payload on board at 4,100 kg, deployed 44 minutes into flight. Formerly known as PSN-6, Nusantara Satu is a high throughput satellite that will provide voice and data communications as well as broadband internet throughout the Indonesian archipelago and South East Asia. Built by SSL for PT Pasifik Satelit Nusantara, it was the first private telecommunications company in Indonesia. The cost of the project is estimated at $230 million. The mission uses solar electric ion thrusters to get to the correct orbit, but will employ conventional chemical thrusters to stay in that orbit. It is expected to last at least 15 years.

Nusantara Satu
The Nusantara Satu spacecraft, topped with the Beresheet lunar lander and the U.S. Air Force’s S5 space situational awareness satellite, is pictured before encapsulation inside the Falcon 9 rocket’s payload fairing at Cape Canaveral. Credit: SSL

The other secondary payload on the Falcon 9 was an experimental Air Force satellite intended to test space situational awareness technologies. The flight was brokered by Spaceflight, a Seattle based company that finds rideshare launch services. The S5 satellite was made for the Air Force Research Laboratory (AFRL). Although the mission has had very little information released about it there has been some. Blue Canyon Technologies announced in September 2017 that it won a contract from AFRL to build two small satellites to operate in GEO. One was identified as S5, a 60 kg satellite using a payload provided by Applied Defence Solutions. The illustrations released show an optics system attached to a satellite bus, and a solar array. “The objective of the S5 mission is to measure the feasibility and affordability of developing low cost constellations for routine and frequent updates to the GEO space catalog,” Blue Canyon Technologies said in its statement. The S5 satellite is attached to the Nusantara Satu satellite and will be until it reaches GEO, where it will separate, turn on, and start its mission. This is not dissimilar to Hispasat 30W-6 that also deployed a smallsat after launch last year.

blue canyon S5 smallsat
Blue Canyon Technologies announced in September 2017 it won an AFRL contract to provide the bus for an experimental smallsat called S5 for space surveillance applications. Credit: Blue Canyon Technologies

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

Eighth Set of Iridium NEXT satellites launched

flying falcon 9
A falcon 9 launching from Vandenberg AFB in the early hours of the morning. Credit: SpaceX

At 15:31 UTC on January the 11th 2019 an already flown Falcon 9 was the first SpaceX rocket flown in 2019. Launching from Vandenberg Air Force Base in California, it launched ten more Iridium NEXT satellites. The 70 metre high rocket with its 9 merlin 1D engines is the first of 18 expected flights this year for SpaceX. A surprisingly clear day for Vandenberg, the Falcon 9 flew over the Pacific Ocean early in the morning (local time) giving a great view of the launch. The Falcon 9 first stage booster successfully landed back on Earth for a second time, landing on the autonomous drone ship “Just Read the Instructions”.

vandenberg launch
A great view of the Falcon 9 launching with another 10 Iridium NEXT satellites aboard, finishing up the set. Credit: SpaceX
The mission patch of the Iridium NEXT 8 mission.

The booster used for this mission was B1049.2, which had previously flown on Telstar 18V mission, making this the second time this Block 5 first stage has flown. The 1.71 million pounds of thrust took the 9,600 kg payload towards a Polar Low Earth Orbit, like the other Iridium NEXT satellites. The rocket deployed the satellites one at a time over a roughly 15 minute period, around 30 minutes into the flight. Each of the 1,896-pound (860-kilogram) Iridium Next satellites will use their own thrusters to climb into a higher 476-mile-high (780-kilometer) to orbit, where six of the new spacecraft will rendezvous with the last of the old Block 1 satellites.

NEXT satellites
The Iridium Next satellites were connected to their dispensers inside a clean room at Vandenberg Air Force Base, California, before mating to the Falcon 9 rocket. Credit: Iridium
The SpaceX rocket high above the ground at Vandenberg, CA. 10 Iridium NEXT satellites aboard. Credit: SpaceX

This mission of ten more upgraded spacecraft has completed the build-out of Iridium’s modernised $3 billion global communications network. They are setting up for the planned debut of new broadband and aircraft tracking services in the coming months. This completes the 75 payloads on eight Falcon 9 missions since January 2017. The idea was to upgrade the old voice and data relay networks currently still in use. Iridium ordered 81 Iridium NEXT satellites from Thales Alenia Space and Northrop Grumman Innovation Systems, which were built in Gilbert, Arizona. Two weeks after the maiden flight of the Falcon 9 in 2010 Iridium announced a nearly $500 million contract for SpaceX to deliver the satellites to orbit. The initial plan was to start launching in 2015, finishing around 2017. Delays pushed by two Falcon 9 problems in 2015 and 2016 pushed the schedule back. In the end only 75 of the planned 81 have been launched, with 6 being flight spares. They could be launched to be additional backups for the system.

Falcon 9
A photo showing the raw power of the Merlin 1D engines launching the Falcon 9. Credit: SpaceX

The old satellites, that were built by Lockheed Martin had an initial lifespan of 7 years, and have way outlived their planned life. Engineers are currently deactivating the retiring satellites as the new stations arrive in orbit. Most of them have been maneuvered out of orbit to fall back to Earth and burn up in the atmosphere. They have usually gone through a process of “passivation” where the batteries and propellant tanks are drained to minimise chances of them exploding at some point in the future. Iridium satellites have also been a popular sight for astronomers, with “Iridium flares” becoming a commonly used term. It is where reflective parts of a satellite catch a glint from the sun and show up on the ground as a flash, sometimes 5-20 seconds long. They can be as bright as magnitude -8, which is brighter than Venus in the sky. Iridium satellites have been known to be a noticeable cause of these flares, leading to the name “Iridium flares”. The new satellites have a different antenna shape meaning they do not reflect in the same way.

Iridium flares
An iridium flare over Butser Hill, Hampshire. Credit: Nikki Young (@astro_niks)

As well as majorly upgraded telecommunications ability the satellites also host a radio receiver for Aireon, an affiliate of Iridium. Aireon work with traffic control authorities in Europe and Canada. The new instrumentation will track air traffic worldwide, including planes travelling outside the range of conventional ground based radar. This completion of the network has allowed the services provided by Aireon to take a big step forward towards starting operations. When airplanes fly out of radar range, pilots are typically instructed to maintain a certain course and altitude, ensuring 30-to-100 miles (about 50-150 km) of separation between aircraft for safety purposes. With real-time global monitoring, those requirements could be relaxed. According to Aireon the certification of the system should be complete by March, allowing operational trials over the North Atlantic.

merlin engines
A photo showing the Raw power of the nine Merlin 1D engines, exposed to see the flames in a better light. Credit: SpaceX

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

The Space Missions of 2018

2018 has definitely been a big year for space, and space exploration. I have managed to capture a few of the great moments like the launch of InSight, JAXA landing rovers on an asteroid, and the launch of the Parker Probe. There have been a few others that are notable mentions, and that is the point of this post, to talk about some great launched missions, and others that have finished their jobs, purposely or forced.

Bepicolombo

The British built Bepicolombo launched in October 20th, to begin its 7 year journey to visit Mercury. Currently one of the least explored planets in the solar system, Bepicolombo intends to change that. When it arrives in late 2025 it will endure temperatures of over 350 °C, and be there for at least a year, possibly for twice that. It is made up of two spacecraft, the Mercury Planet Orbiter (MPO) lead by ESA, and the Mercury Magnetospheric Orbiter (MMO) lead by JAXA. The aim is to measure the composition, atmosphere and magnetosphere of Mercury to understand its history. This could lead to understanding more about how other planets such as Earth formed. BepiColombo is named after Professor Giuseppe (Bepi) Colombo (1920-1984) from the University of Padua, Italy. He made big leaps in understanding Mercury, and suggested to NASA how to use a gravity-assist swing-by of Venus to place Mariner 10 into a solar orbit of Mercury.

Bepicolombo artists impression
Artist’s impression of the BepiColombo spacecraft in cruise configuration. The Mercury Transfer Module is at the bottom. The Mercury Planetary Orbiter is in the middle. The Mercury Magnetospheric Orbiter sits inside the sunshield, visible at the top. Credit: ESA/ATG medialab

InSight

Back in May I posted about how an Atlas V had just lifted the Mars Insight lander. In late November the $814 million lander it reached its target of the Elysium Planitia region of Mars, landing safely. The aim is for it investigate how the processes that shaped all the inner rocky planets more than 4 billion years ago worked. It uses two seismometers (one of which built by RAL space in the UK) and a number of other instruments to study the crust, mantle and core of the red planet. It works by measuring how much the area shakes when asteroids hit the planet. Also measuring the heat flow and precision tracking it is getting a glimpse of Mars we have yet to see. The launch also allowed for two cubesats, MarCO-A and MarCO-B to be the first to be launched into deep space. The first test of miniaturised cubesat technology being used on another planet. This mission will be one to watch for the near future.

There’s a quiet beauty here. Looking forward to exploring my new home. #MarsLanding pic.twitter.com/mfClzsfJJr— NASA InSight (@NASAInSight) November 27, 2018

Kepler

A bit sadder news is the end of the Kepler space telescope after 9 years service. It has collected a huge amount of data in its lifetime, finding the night sky is filled with billions of hidden planets, more planets than stars. This may seem obvious but is not easy to prove. During its time the planet hunter has found evidence of more than 2,600 planets outside our solar system, and left hints at many more, paving the way for future planet hunters and getting good engineering data on what works and what doesn’t. Telescopes such as ARIEL which will launch in the net decade will have better design due to Kepler. The space telescope had been running low on fuel for months, and struggled to point the correct way. After the 4 year mission it continued to work a different mission named K2. In October it was officially declared dead, left in orbit as it may have been dangerous for it to enter the atmosphere.

The Kepler Space Telescope mission, by the numbers
The Kepler Space Telescope mission, by the numbers. Credit: NASA/Ames/Wendy Stenzel

Parker Solar Probe

Back in august I wrote about the classic Delta IV heavy launching with the Parker Solar Probe aboard. The aim is to get closer to the sun than previously possible. Over the next seven years the probe will make 24 close approaches to the sun, with the aim of eventually getting within 3.8 million miles of the surface. The previous record (that Parker has now broken) was 26.6 million miles, set in 1976. It will revolutionise our understanding of the sun, and how the changing conditions can affect the solar system. It will use Venus’ gravity to slowly get closer to the sun. As a reference, we are 93 million miles away from the sun. It will eventually fly through the sun’s outer atmosphere, known as the Corona for the first time, getting brand new, in situ measurements. The spacecraft has a 4.5 inch thick carbon composite shield to protect it from the heat and radiation. The temperatures will reach over 1300 C.

Parker Solar Probe in the Fairing
Parker Solar Probe in the Fairing, ready to be put on the rocket in the clean room. Credit: NASA/Johns Hopkins APL/Ed Whitman

TESS

Back in April I posted about the launch of the TESS exoplanet hunter by a Falcon 9. I have already talked about exoplanets and planet hunters, and this is a big part of that plan. TESS stands for Transiting Exoplanet Surveying Satellite, and it does what it says on the tin, it is surveying the sky for potential exoplanets. Basically it is looking for exoplanets that could harbour life. The expectation is that it will catalog thousands of planet candidates and vastly increase the known number of exoplanets. Approximately 300 are expected to be Earth-sized and super-Earth-sized exoplanets that can then use the future more complex telescopes such as JWST to look at in more detail. The satellite will look at the sky for two years by breaking it up into 26 sections, and looking at each one for 27 days at a time. Unlike Kepler and K2 TESS will be looking at brighter stars, meaning ground based observatories can corroborate the observations.

the TESS telescope
The TESS satellite before launch, the four cameras can be seen on the top of the spacecraft; Credit: NASA.

Dawn

In September I posted about the Dawn spacecraft and the rise of Ion Engines. With the loss of the Dawn mission around the same time as Kepler, they ran out of fuel within two days of each other. The 11 year Dawn mission racked up a few very important records. It is the first spacecraft to orbit two different celestial bodies, and the first to orbit any object in the main asteroid belt between Mars and Jupiter. It is also a record breaker for electric speed. Travelling over 25,700 mph. Visiting Ceres and Vesta, it found out some very important scientific data that tells us a huge amount about the formation of our solar system. With a large proportion of the meteorites hitting Earth coming from these two bodies, Dawn showed the difference between the potential dwarf planets. One of the early uses of ion engines, it also showed the potential of the efficient form of travel, and now many more satellites are using them.

Dawn prior to encapsulation at its launch pad on July 1, 2007. Credit: NASA/Amanda Diller

Mars Rovers

This is a mixed bag, we have already had great news about the InSight lander, with it recording sounds of Martian winds, the rovers also have big news this year. In June the Curiosity rover found Organic matter in the Martian soil. The samples, taken from 3 billion year old mudstone contained complex hydrocarbons. This along with its detection of methane changes in the atmosphere are one step along the way to finding evidence of life on other planets. There have also been many more photos from the red planet, with Curiosity taking a few more selfies. See here how the car sized rover achieves the great pictures. On the other side of it there was a huge Martian storm that may have killed the Opportunity rover by covering the solar panels in dust. Although there are still hopes the rover can start communications again, we will have to see.

Curiosity in a dust storm
An image shared by Seán Doran on Sunday of the Mars Curiosity in the middle of a dust storm reported to cover an area the size of the US and Russia Combined. CredIt: NASA/JPL/Seán Doran.

Asteroid Rovers

In late september, another great story came out, that JAXA (the Japanese space agency) successfully landed a number of rovers on an asteroid. Still to launch all of the four onto the surface, there are already great images from the surface of an asteroid. The little rovers use a hopping mechanism to get around, as the gravity on the asteroid is so small a wheeled rover just wouldn’t work. The spacecraft will also be attempting to collect samples to return to Earth in the coming years. The Hayabusa 2 probe is a follow up to the Hayabusa probe which was not a sample return. The second launched on December 3rd 2014 and rendezvoused with the near-earth asteroid 162173 Ryugu on the 27th of June 2018. Currently in the process of surveying the asteroid for a year and a half, it will depart in December 2019, returning to Earth in December 2020.

 MINERVA-II image
First pictures from a MINERVA-II-1 rover that landed on the asteroid. Credit: JAXA.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on. Most of all, thank you for taking the time to read my posts this year! So all have a Happy New Year, and here’s to a great 2019 in space!

Follow @TheIndieG
Tweet to @TheIndieG

Record Breaking Falcon 9 Launch

Telstar 19V
The awesome flames of the Falcon 9 Block 5 carrying Telstar 19V. Credit: Marcus Cote.

On the 22nd of July 2018, at 05:50 UTC a record breaking Block 5 Falcon 9 launched Telstar 19V into subsynchronous transfer orbit. Launching from Cape Canaveral Space Launch Complex 40, F9-59 (launch designation) was the First Block 5 to launch from this pad. The 7,075 kg payload was more than the previous record holder, the 6,910 kg TerreStar 1 orbited by the Ariane 5 in July 2009. Although, the previous record holder launched the satellite to full geosynchronous transfer orbit. This launch was seen as a key test of the newly developed Block 5 launch system. The first stage was recovered on the autonomous drone ship “Of Course I Still Love You” off the Florida coast.

Telstar 19V medium
A great view of SLC-40 from across the water while Telstar 19V is being launched. Credit: SpaceX Flickr.

An SSL 1300 series satellite, Telstar 19V is part of the Telstar series. Owned by the Canadian Satellite Company Telsat, it was built by Space Systems Loral (MAXAR). Using Ka and Ku band transponders it is branded as a high throughput communications satellite, designed for high bandwidth applications that the communications industry is currently dealing with. It is collocated with Telesats Telstar 14R satellite at the same position. The companies first high throughput satellite was Telstar 12V, which sits 15 degrees west.

The upgraded engines of the Merlin 1D engines on the Falcon 9 block 5 can produce a total of 775.65 tonnes of thrust at sea level. The second stage produces roughly 100 tonnes of thrust when in space. The first stage with the designation B1047 burned for 2 minutes and 30 seconds before separating to perform reentry and landing burns. The second stage burned for 5 minutes and 38 seconds to reach a parking orbit, stopping T+8 minutes 12 seconds. The stage restated at T+26 minutes 49 seconds for a 50 second burn to put the satellite into a 243 x 17,863 km x 27 degree orbit. The satellite will then raise itself into a geostationary orbit at 63 degrees west to cover the Americas.

Telstar 19V long exposure
A great long exposure of F9-59 launching Telstar 19V from Florida’s Cape Canaveral. Credit: SpaceX.

A total of 26 Falcon 9/Falcon Heavy core and booster stages have now been recovered in 32 attempts. Four of those successful landings have been on “Just Read The Instructions” off the California coast, 10 have been at Cape Canaveral Landing zone 1&2, and 11 on “Of Course I Still Love You off the Florida coast. Twenty unique first stages have been recovered, with fourteen of them flying twice, and eight being expended during their second flight. All of the successfully recovered first stages have been version 1.2.

Telstar 19V medium 2
A Falcon 9 launches from Space Launch Complex 40 with a record breaking satellite aboard. Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

The Final Block 4 Changes the Florida Sky

Smoke left over by CRS-15
The smoke stream left over by CRS-15 after the launch from Cape Canaveral, FL. Credit: Marcus Cote.

On the 29th of June 2018, at 09:42 UTC the last Block 4 type Falcon 9 rocket launched a cargo mission to the International space station. Launching from Space Launch Complex 40 at Cape Canaveral Air Force Base, the Falcon 9 was carrying CRS-15, a resupply for the International Space Station (ISS). This is the 15th mission of up to 20 CRS missions that have been contracted with NASA to resupply the ISS. Initially planned for April 2018, it was eventually pushed to the 29th of June. Previous resupply missions have been conducted by SpaceX and Orbital ATK.

Long Exposure CRS-15
A great long exposure image of the CRS-15 launch. Plenty of other versions of these out there, but this one has the great smoke shapes at the end. Credit: Marcus Cote.

B1045 (the first stage booster) was the seventh and final “Block 4” Falcon 9 v1.2 first stage manufactured by SpaceX. For this reason it is very likely that this was the final Block 4 first stage orbital vehicle. SpaceX has since developed the Block 5 the debuted in May. Together the seven Block 4 Falcon 9’s boosted twelve missions, with most being expended on the second flight. This stage was purposely expended at the end of the mission, the ninth purposeful expenditure in the last twelve launches. This stage was not equipped with landing legs or titanium steering grid fins. It was the 14th flight of a previously flown Falcon 9 first stage, and the eighth to be expended on the second flight.

CRS-15 by Spacex
The night launch of the CRS-15 mission to resupply the ISS with a Dragon capsule. Credit: SpaceX

B1045.2 had previously boosted NASA’s TESS towards orbit on April 18th 2018, I wrote about that launch here. With it returning to the autonomous drone ship “Of Course I Still Love You” downrange. For this mission it launched the two stage rocket and powered it for 2 minutes and 51 seconds. With a Dragon 11.2 refurbished spacecraft that was previously used on CRS-9 in July 2016 the main payload for the rocket. The first put the capsule and the second stage into a 227 x 387 km x 51.64 degree orbit. The block 5 second stage burned for about 8 minutes and 31 seconds after liftoff, inserting Dragon into the required orbit. The burn was 36 seconds shorter than previous Block 4 launches as this rocket had higher thrust. Dragon rendezvoused with the ISS on the 2nd of July after an extended coast.

CRS-15 smoke
The great view of the remanence of the CRS-15 launch, taken from the Vehicle Assembly Building at Cape Canaveral. Credit: Marcus Cote.

This launch left a particularly cool looking smoke cloud afterwards. With many Twitter users posting images of the smoke remnants hundreds of miles away. The night launch also allowed for some great photos by many of the keen photographers that are at every launch, capturing many of the images in this post. To see more of the awesome rocket launches, I have posted about many, and will continue to do so.

CRS-15 launch
The launch of the CRS-15 mission. You can see the flames from the 9 Merlin-1D engines. Credit: SpaceX

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

The First Block 5 Launches Bangladesh’s First Satellite

F9-55 launches
An awesome image of the first Block 5 Falcon 9 taking off from LC 39A at KSC. Credit: SpaceX Flickr.

On the 11th of May 2018, at 20:14 UTC the first ever block 5 Falcon 9 rocket launched Bangabandhu 1 into geosynchronous transfer orbit. Launched from Launch Complex 39A at Cape Canaveral Air Force Base, the F9-55 (launch designation) was delayed after an automatic abort on May 10th, 1 minute before liftoff. Bangabandhu 1, a Thales Alenia Space Spacebus 4000B2 series satellite is Bangladesh’s first geostationary communications satellite.

The block 5 has been long awaited by SpaceX fans, with many images in the news, and plenty of hints on Twitter. SpaceX has been incrementally improving and upgrading the Falcon 9 v1.2 booster design since it’s first launch in December 2015. Designed to be much easier to refurbish, with potentially 10 reuses in each booster. Previous block designs have only been able to be reused once before being decommissioned.

F9-55 on the pad
The F9-55 on the launchpad ready to fire a satellite into GTO more efficiently that previous versions. Credit: @marcuscotephoto on twitter.

The Block 5 incorporates higher thrust Merlin 1D engines that have turboprop modifications that were requested by NASA. These modifications are to accommodate future potential crew launches. Another big change was mentioned in the livestream, where the pressurisation method in the second stage has been improved. After the AMOS 6 Falcon 9 explosion, the new version allows for faster, later and denser, chilled kerosene fuel loading. It also has new landing legs that can be retracted without being removed like previous Falcon 9’s. There are other changes, but they have been featured in previous designs.

F9-55 launch
The Falcon 9 takes off with Bangladesh’s first geostationary communications satellite on board. Credit: @marcuscotephoto on Twitter

The first stage had designation B1046. It burned for 2 minutes and 31 seconds, before separating ro perform reentry burns. It opened its new landing legs and landed on the autonomous drone ship Of Course I Still Love You, 630km downrange in the ocean. The second stage burned for 5 minutes and 43 seconds to reach parking orbit at T+8 minutes and 19 seconds. It then restarted ar T+27 minutes and 38 seconds for a 59 second long second burn that accelerated the craft to GTO.

F9-55 awesome shot
The Falcon 9 after an aborted launch the day before, with a new paint scheme to denote the block 5. Credit: SpaceX Flickr.

In the 31 attempts, 25 Falcon 9/Falcon Heavy booster have been successfully recovered. Four of the landings have been on “Just Read The Instructions” off the coast of California. 10 on land at Cape Canaveral from LZ1 with another one on  LZ2. 10 have landed on the autonomous drone ship, Of Course I Still Love You off the Florida coast. Nineteen individual first stages have been recovered, eleven have flown twice, with five of those ether expended or lost during their second flights. All the recovered stages have been v1.2 Falcon 9’s.

F9-55 power
The first look at the extra thrust on the Falcon 9 Merlin 1D engines in the new Block 5. Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

The Exoplanet Hunter TESS Launched by Falcon 9

TESS taking off
The Falcon 9 taking off from SLC-40 at Cape Canaveral with TESS on board. Credit: SpaceX Flickr.

On April 18th, 2018 at 22:51 UTC a Falcon 9 took off from Launch Complex 40 at Cape Canaveral AFB. Aboard was NASA’s latest research satellite TESS. A mission that cost $337 million, Transiting Exoplanet Survey Satellite (TESS)  is the latest in a line of space based observatories that are set to launch this decade. Launched into an arching elliptical orbit that will take the spacecraft over two thirds of the distance to the moon. The first stage of the Falcon 9 landed on the autonomous drone ship Of Course I Still Love You to be refurbished and reused.

falcon 9 engines
The sheer power of the Falcon 9’s nine Merlin 1D engines produce an awesome inferno. You can clearly see the 45 written on the side as the booster designator. Credit @marcuscotephoto on Twitter.

After a 5 day checkout of the spacecraft, basically a hardware check, the ground controllers will switch on the TESS cameras. TESS is designed to scan around 85% of the sky during the two year mission, with astronomers estimating as many as 20,000 new planets could be found. It plans to build on discoveries made by NASA’s Kepler telescope which was launched in 2009 to find earth like planets. TESS carries four 16.8-megapixel cameras, and will look for dips in light coming from 200,000 preselected nearby stars. The four cameras cover a square in the sky that measures 24 x 24 degrees, wide enough to fit the Orion constellation into a single camera. the cameras together study a set area of sky for 27 days before staring at the next section.

TESS orbit
An illustration of the orbits that TESS will go through to get to the final orbit P/2. Credit: NASA.

The orbit TESS is being launched into is known as P/2, and requires time and finesse to reach. TESS will slingshot by the moon at a distance of around 5,000 miles (8,000 kilometers), using gravity to reshape its orbit, increasing the satellite’s orbital perigee, or low point, to the final planned altitude of around 67,000 miles. After the lunar flyby, the high point of the satellite’s elongated orbit will stretch well beyond the moon, and another thruster firing will nudge TESS into its final orbit in mid-June. Science data is planned to start in july, with the first year of the two year campaign aimed at the stars in the southern sky. TESS has been built to have enough fuel to last 20 or 30 years, assuming funding by NASA and the components on board continue to function correctly.

the TESS telescope
The TESS satellite before launch, the four cameras can be seen on the top of the spacecraft; Credit: NASA.

Each of TESS’s cameras have four custom built re-sensitive CCD sensors designed and developed by MIT’s Lincoln Laboratory. The sensors are claimed to be the most perfect CCD’s ever flown by a science mission. The lenses used by the cameras are only about 4 inches (10mm) wide, meaning it has a fairly low light collecting power compared to other space telescopes. The James Webb Space Telescope for example launching in 2020 had a 21.3ft (6.5m) primary mirror, although the satellite has cost over $8 billion to make. TESS is a bit like a finder telescope, it will lay a bedrock for future missions such as Webb and ground based observatories to make better readings. It gives a good idea of the best places to look, where the most likely exoplanets are.

launch of TESS
The Falcon 9 launching the Transiting Exoplanet Survey Satellite to an orbit of P/2. Credit: SpaceX Flickr.

TESS works by looking at a star, in this case mainly M-dwarf stars, which are cooler than our sun. They are also known as red dwarfs and make up most of the stars in our galaxy. When a planet goes in front of the star the light received by TESS “dips” and changes slightly in colour. This change in the light it receives can tell scientists alot about the size of a planet, and other things like density and velocity. They expect TESS to find between 500 and 1,000 planets that are between one and three times the size of Earth, and 20,000 planets the size of Neptune or Jupiter. The readings will give a good idea of where to focus on and ‘follow up’ on future missions. Then missions such as JWST can probe and use more complex tools to find information such as atmospheric composition, and whether they could be habitable.

long exposure TESS
A long exposure of the Falcon 9 taking off over the SpaceX hangar at Cape Canaveral. Credit: SpaceX Flickr.

The Falcon 9 used was a v1.2 with designation F9-54. It used a brand new “Block 4” first stage. The booster designated B1045 has a clear 45 written on the side in some of the close up booster images. The fist stage boosted for 2 minutes and 29 seconds, then detaching and slowing itself down. The booster landed downrange on the autonomous drone ship “Of Course I Still Love You”. The first successful drone ship landing since October 2017. A total of 24 Falcon 9 or Falcon Heavy booster stages have now been recovered in 30 attempts. Four of which were on “Just Read The Instructions” off the coast of California, ten at Cape Canaveral Landing Zone 1 and 2, and nine on the autonomous drone ship “Of Course I Still Love You” off the Florida Coast. 18 first stages have been recovered, 11 of which have flown twice, five have been lost during their second flight. B1045 was the last brand new “Block 4” Falcon 9 booster.

TESS taking off
An awesome photo of a Falcon 9 taking off from across the water, a perfect day for pictures! Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

Falcon 9 Re-Supplies the ISS on CRS-14

Launch of CRS-14
Threatnigh thunderstorms, an image taken by a sound triggered camera at Space Launch Complex 40. Image from @marcuscotephoto on twitter.

On April 2nd, 2018 at 20:30 UTC a Falcon 9 took off from Launch complex 40 at Cape Canaveral AFB. Aboard was a refurbished Dragon capsule with CRS-14, a resupply for the ISS. This was the 14th of up to 20 CRS missions contracted with NASA, with new Crew Dragon variants soon to be used. The capsule safely reached the ISS and was docked 20 minutes earlier than planned. The cost of the mission was reported to be around $2 billion, and comes under a contract between NASA and SpaceX.

Reused Dragon Capsule on CRS-14
The CRS-14 just before launch, carrying a reused Dragon Capsule for CRS-14. Image from @marcuscotephoto on Twitter.

The Dragon capsule carried 2,630kg  of cargo to the International Space Station, including supplies and research equipment. it has 1070 kg of science equipment, 344 kg of supplies for the crew, 148 kg of vehicle hardware, 49 kg of advanced computer equipment and 99 kg of spacewalking gear. Aboard there are a number of experiments, such as a new satellite designed to test methods of removing space debris. There are also frozen sperm cell samples, a selection of polymers and other materials, all experiments to test what happens to different items when exposed to space and microgravity.

CRS-14 launch
Launch of F9-53 on April 2nd 2018, carrying CRS-14 using a reused rocket and capsule. Image from SpaceX Flickr.

Designated F9-53, the Falcon 9 used booster B1039.2, which previously boosted the CRS-12 mission in August 2017, where it returned to landing zone 1. As is customary, the first stage was left “sooty” from it’s first flight. It powered for 2 minutes and 41 seconds before falling back to earth. For the sixth time in the last 7 Falcon 9 launches, the first stage was purposefully expended, even though it carried landing legs and steering grid fins. As with other expenatures, the rocket went through the re-entry landing sequence, but just didn’t have anything to land on and ended up in the sea. It was the 11th flight of a previously flown Falcon 9 first stage, five of which have been purposefully expended during the second flight, only 3 first stages remain that can be reflown.

A Sooty Falcon 9
The Falcon 9 was left sooty after its first flight which has now become the norm. Image from @marcuscotephoto on twitter.

The second stage completed its burn at 9 minutes and 11 seconds after takeoff, to insert Dragon into a Low Earth Orbit inclined 51.6 degrees to the equator. The Dragon 10.2 is a refurbished spacecraft capsule that first flew during the CRS-8 mission in April 2016. CRS-14 was the third launch of a previously flown Dragon capsule. This was also the first time that both the Dragon capsule and the Falcon 9 were refurbished versions on the same rocket. The docking process was carried out for around 20 minutes, and at 10:40 UTC Kanai detached the lab’s robotic arm to hook the free-flying Dragon capsule. At around 12:00 UTC Houston and Canada took control of the robotic arm and maneuvered it to the Harmony capsule of the ISS. It will be unpacked in a very slow process over a number of months.

Falcon 9 CRS-14
A falcon 9 lifting off from Cape Canaveral AFB Launch Complex 40. Image from SpaceX Flickr.

CRS-14 vapour streams
You can see the vapour streams coming off the falcon 9 as it sends its cargo towards the ISS. Image from SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

SpaceX Launches NEXT 10 Iridium Satellites For a Fifth Time

Iridium-5 Launch 4
The Falcon 9 F9-52 launching with the Iridium NEXT-5 satellites aboard. Image from SpaceX Flickr.

At 14:13 UTC on March 30th 2018, SpaceX launched a Falcon 9 from foggy Vandenberg Air Force Base. Although designated F9-52 this was the 51st Falcon 9 launch. Using a v1.2 variant booster, the rocket delivered 10 Iridium NEXT satellites into orbit. This was the fifth of eight planned Iridium NEXT missions.

Iridium-5 Launch 2
The Falcon 9 lifting off from Vandenberg AFB california. After the fog had lifted. Image from SpaceX Flickr.

 

From Vandenberg AFB Space Launch Complex 4 East, the first stage of the rocket lasted 2 minutes 34 seconds, separating a few seconds after. The second engine fired for 6 minutes 23 seconds. This part of the webcast was purposefully cut short due to a NOAA remote sensing licensing requirements. This is an issue with SpaceX not having the right licence to broadcast images from certain parts of space. This burn placed the rocket in a roughly 180 x 625 km parking orbit. The Thales Alenia Space satellite then deployed an hour after launch, after a second brief 11 second burn. This put the satellites into a 625km x 86.6 deg orbit.

Iridium-5 Long Exposure
A 53 second long exposure of Falcon 9 F9-52 launching from Vandenberg AFB. Image from SpaceX Flickr.

The rocket used another “Fairing 2.0”, which is slightly larger than usual, but equipped with recovery systems. These systems include thrusters, a guidance system, and a parafoil. The ship, named Mr Steven has a large net to capture the halves of the fairing. Again, the ship failed to catch one of the fairings, due to a parachute system issue. In a tweet by Elon Musk, it was reported that the GPS guided parafoil twisted so the fairing impacted the water at high speed. He also said that SpaceX are doing helicopter drop tests to fix the issue.

Iridium-5 launch 3
The Falcon 9 launching, with a view of the surrounding buildings and fuel tanks. Image from SpaceX Flickr.

Five of the six previously used Falcon 9 vehicles have been fully expended, this was the tenth flight of a previously-flown Falcon 9 first stage. Four of these ten have been purposely expended during their second flight. The first stage (B1041.2) was previously flown during the Iridium NEXT 3 launch on October 9th, 2017. It performed the 2 minute 34 second boost, and performed what SpaceX call a “simulated landing” into the ocean. SpaceX appear to be only launching a reused stages for one reflight, with the soon to launch “block 5” likely to be reused multiple times. Currently the company only have 4 first stages that might be flown, with one allocated for the upcoming CRS-14 dragon resupply mission.

Iridium-5 mission 1
The Falcon 9 F9-52 launching with the Iridium NEXT-5 satellites aboard. Image from SpaceX Flickr.