Record Breaking Falcon 9 Launch

Telstar 19V
The awesome flames of the Falcon 9 Block 5 carrying Telstar 19V. Credit: Marcus Cote.

On the 22nd of July 2018, at 05:50 UTC a record breaking Block 5 Falcon 9 launched Telstar 19V into subsynchronous transfer orbit. Launching from Cape Canaveral Space Launch Complex 40, F9-59 (launch designation) was the First Block 5 to launch from this pad. The 7,075 kg payload was more than the previous record holder, the 6,910 kg TerreStar 1 orbited by the Ariane 5 in July 2009. Although, the previous record holder launched the satellite to full geosynchronous transfer orbit. This launch was seen as a key test of the newly developed Block 5 launch system. The first stage was recovered on the autonomous drone ship “Of Course I Still Love You” off the Florida coast.

Telstar 19V medium
A great view of SLC-40 from across the water while Telstar 19V is being launched. Credit: SpaceX Flickr.

An SSL 1300 series satellite, Telstar 19V is part of the Telstar series. Owned by the Canadian Satellite Company Telsat, it was built by Space Systems Loral (MAXAR). Using Ka and Ku band transponders it is branded as a high throughput communications satellite, designed for high bandwidth applications that the communications industry is currently dealing with. It is collocated with Telesats Telstar 14R satellite at the same position. The companies first high throughput satellite was Telstar 12V, which sits 15 degrees west.

The upgraded engines of the Merlin 1D engines on the Falcon 9 block 5 can produce a total of 775.65 tonnes of thrust at sea level. The second stage produces roughly 100 tonnes of thrust when in space. The first stage with the designation B1047 burned for 2 minutes and 30 seconds before separating to perform reentry and landing burns. The second stage burned for 5 minutes and 38 seconds to reach a parking orbit, stopping T+8 minutes 12 seconds. The stage restated at T+26 minutes 49 seconds for a 50 second burn to put the satellite into a 243 x 17,863 km x 27 degree orbit. The satellite will then raise itself into a geostationary orbit at 63 degrees west to cover the Americas.

Telstar 19V long exposure
A great long exposure of F9-59 launching Telstar 19V from Florida’s Cape Canaveral. Credit: SpaceX.

A total of 26 Falcon 9/Falcon Heavy core and booster stages have now been recovered in 32 attempts. Four of those successful landings have been on “Just Read The Instructions” off the California coast, 10 have been at Cape Canaveral Landing zone 1&2, and 11 on “Of Course I Still Love You off the Florida coast. Twenty unique first stages have been recovered, with fourteen of them flying twice, and eight being expended during their second flight. All of the successfully recovered first stages have been version 1.2.

Telstar 19V medium 2
A Falcon 9 launches from Space Launch Complex 40 with a record breaking satellite aboard. Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

The Final Block 4 Changes the Florida Sky

Smoke left over by CRS-15
The smoke stream left over by CRS-15 after the launch from Cape Canaveral, FL. Credit: Marcus Cote.

On the 29th of June 2018, at 09:42 UTC the last Block 4 type Falcon 9 rocket launched a cargo mission to the International space station. Launching from Space Launch Complex 40 at Cape Canaveral Air Force Base, the Falcon 9 was carrying CRS-15, a resupply for the International Space Station (ISS). This is the 15th mission of up to 20 CRS missions that have been contracted with NASA to resupply the ISS. Initially planned for April 2018, it was eventually pushed to the 29th of June. Previous resupply missions have been conducted by SpaceX and Orbital ATK.

Long Exposure CRS-15
A great long exposure image of the CRS-15 launch. Plenty of other versions of these out there, but this one has the great smoke shapes at the end. Credit: Marcus Cote.

B1045 (the first stage booster) was the seventh and final “Block 4” Falcon 9 v1.2 first stage manufactured by SpaceX. For this reason it is very likely that this was the final Block 4 first stage orbital vehicle. SpaceX has since developed the Block 5 the debuted in May. Together the seven Block 4 Falcon 9’s boosted twelve missions, with most being expended on the second flight. This stage was purposely expended at the end of the mission, the ninth purposeful expenditure in the last twelve launches. This stage was not equipped with landing legs or titanium steering grid fins. It was the 14th flight of a previously flown Falcon 9 first stage, and the eighth to be expended on the second flight.

CRS-15 by Spacex
The night launch of the CRS-15 mission to resupply the ISS with a Dragon capsule. Credit: SpaceX

B1045.2 had previously boosted NASA’s TESS towards orbit on April 18th 2018, I wrote about that launch here. With it returning to the autonomous drone ship “Of Course I Still Love You” downrange. For this mission it launched the two stage rocket and powered it for 2 minutes and 51 seconds. With a Dragon 11.2 refurbished spacecraft that was previously used on CRS-9 in July 2016 the main payload for the rocket. The first put the capsule and the second stage into a 227 x 387 km x 51.64 degree orbit. The block 5 second stage burned for about 8 minutes and 31 seconds after liftoff, inserting Dragon into the required orbit. The burn was 36 seconds shorter than previous Block 4 launches as this rocket had higher thrust. Dragon rendezvoused with the ISS on the 2nd of July after an extended coast.

CRS-15 smoke
The great view of the remanence of the CRS-15 launch, taken from the Vehicle Assembly Building at Cape Canaveral. Credit: Marcus Cote.

This launch left a particularly cool looking smoke cloud afterwards. With many Twitter users posting images of the smoke remnants hundreds of miles away. The night launch also allowed for some great photos by many of the keen photographers that are at every launch, capturing many of the images in this post. To see more of the awesome rocket launches, I have posted about many, and will continue to do so.

CRS-15 launch
The launch of the CRS-15 mission. You can see the flames from the 9 Merlin-1D engines. Credit: SpaceX

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

The First Block 5 Launches Bangladesh’s First Satellite

F9-55 launches
An awesome image of the first Block 5 Falcon 9 taking off from LC 39A at KSC. Credit: SpaceX Flickr.

On the 11th of May 2018, at 20:14 UTC the first ever block 5 Falcon 9 rocket launched Bangabandhu 1 into geosynchronous transfer orbit. Launched from Launch Complex 39A at Cape Canaveral Air Force Base, the F9-55 (launch designation) was delayed after an automatic abort on May 10th, 1 minute before liftoff. Bangabandhu 1, a Thales Alenia Space Spacebus 4000B2 series satellite is Bangladesh’s first geostationary communications satellite.

The block 5 has been long awaited by SpaceX fans, with many images in the news, and plenty of hints on Twitter. SpaceX has been incrementally improving and upgrading the Falcon 9 v1.2 booster design since it’s first launch in December 2015. Designed to be much easier to refurbish, with potentially 10 reuses in each booster. Previous block designs have only been able to be reused once before being decommissioned.

F9-55 on the pad
The F9-55 on the launchpad ready to fire a satellite into GTO more efficiently that previous versions. Credit: @marcuscotephoto on twitter.

The Block 5 incorporates higher thrust Merlin 1D engines that have turboprop modifications that were requested by NASA. These modifications are to accommodate future potential crew launches. Another big change was mentioned in the livestream, where the pressurisation method in the second stage has been improved. After the AMOS 6 Falcon 9 explosion, the new version allows for faster, later and denser, chilled kerosene fuel loading. It also has new landing legs that can be retracted without being removed like previous Falcon 9’s. There are other changes, but they have been featured in previous designs.

F9-55 launch
The Falcon 9 takes off with Bangladesh’s first geostationary communications satellite on board. Credit: @marcuscotephoto on Twitter

The first stage had designation B1046. It burned for 2 minutes and 31 seconds, before separating ro perform reentry burns. It opened its new landing legs and landed on the autonomous drone ship Of Course I Still Love You, 630km downrange in the ocean. The second stage burned for 5 minutes and 43 seconds to reach parking orbit at T+8 minutes and 19 seconds. It then restarted ar T+27 minutes and 38 seconds for a 59 second long second burn that accelerated the craft to GTO.

F9-55 awesome shot
The Falcon 9 after an aborted launch the day before, with a new paint scheme to denote the block 5. Credit: SpaceX Flickr.

In the 31 attempts, 25 Falcon 9/Falcon Heavy booster have been successfully recovered. Four of the landings have been on “Just Read The Instructions” off the coast of California. 10 on land at Cape Canaveral from LZ1 with another one on  LZ2. 10 have landed on the autonomous drone ship, Of Course I Still Love You off the Florida coast. Nineteen individual first stages have been recovered, eleven have flown twice, with five of those ether expended or lost during their second flights. All the recovered stages have been v1.2 Falcon 9’s.

F9-55 power
The first look at the extra thrust on the Falcon 9 Merlin 1D engines in the new Block 5. Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

Falcon 9 Re-Supplies the ISS on CRS-14

Launch of CRS-14
Threatnigh thunderstorms, an image taken by a sound triggered camera at Space Launch Complex 40. Image from @marcuscotephoto on twitter.

On April 2nd, 2018 at 20:30 UTC a Falcon 9 took off from Launch complex 40 at Cape Canaveral AFB. Aboard was a refurbished Dragon capsule with CRS-14, a resupply for the ISS. This was the 14th of up to 20 CRS missions contracted with NASA, with new Crew Dragon variants soon to be used. The capsule safely reached the ISS and was docked 20 minutes earlier than planned. The cost of the mission was reported to be around $2 billion, and comes under a contract between NASA and SpaceX.

Reused Dragon Capsule on CRS-14
The CRS-14 just before launch, carrying a reused Dragon Capsule for CRS-14. Image from @marcuscotephoto on Twitter.

The Dragon capsule carried 2,630kg  of cargo to the International Space Station, including supplies and research equipment. it has 1070 kg of science equipment, 344 kg of supplies for the crew, 148 kg of vehicle hardware, 49 kg of advanced computer equipment and 99 kg of spacewalking gear. Aboard there are a number of experiments, such as a new satellite designed to test methods of removing space debris. There are also frozen sperm cell samples, a selection of polymers and other materials, all experiments to test what happens to different items when exposed to space and microgravity.

CRS-14 launch
Launch of F9-53 on April 2nd 2018, carrying CRS-14 using a reused rocket and capsule. Image from SpaceX Flickr.

Designated F9-53, the Falcon 9 used booster B1039.2, which previously boosted the CRS-12 mission in August 2017, where it returned to landing zone 1. As is customary, the first stage was left “sooty” from it’s first flight. It powered for 2 minutes and 41 seconds before falling back to earth. For the sixth time in the last 7 Falcon 9 launches, the first stage was purposefully expended, even though it carried landing legs and steering grid fins. As with other expenatures, the rocket went through the re-entry landing sequence, but just didn’t have anything to land on and ended up in the sea. It was the 11th flight of a previously flown Falcon 9 first stage, five of which have been purposefully expended during the second flight, only 3 first stages remain that can be reflown.

A Sooty Falcon 9
The Falcon 9 was left sooty after its first flight which has now become the norm. Image from @marcuscotephoto on twitter.

The second stage completed its burn at 9 minutes and 11 seconds after takeoff, to insert Dragon into a Low Earth Orbit inclined 51.6 degrees to the equator. The Dragon 10.2 is a refurbished spacecraft capsule that first flew during the CRS-8 mission in April 2016. CRS-14 was the third launch of a previously flown Dragon capsule. This was also the first time that both the Dragon capsule and the Falcon 9 were refurbished versions on the same rocket. The docking process was carried out for around 20 minutes, and at 10:40 UTC Kanai detached the lab’s robotic arm to hook the free-flying Dragon capsule. At around 12:00 UTC Houston and Canada took control of the robotic arm and maneuvered it to the Harmony capsule of the ISS. It will be unpacked in a very slow process over a number of months.

Falcon 9 CRS-14
A falcon 9 lifting off from Cape Canaveral AFB Launch Complex 40. Image from SpaceX Flickr.
CRS-14 vapour streams
You can see the vapour streams coming off the falcon 9 as it sends its cargo towards the ISS. Image from SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

SpaceX Launches NEXT 10 Iridium Satellites For a Fifth Time

Iridium-5 Launch 4
The Falcon 9 F9-52 launching with the Iridium NEXT-5 satellites aboard. Image from SpaceX Flickr.

At 14:13 UTC on March 30th 2018, SpaceX launched a Falcon 9 from foggy Vandenberg Air Force Base. Although designated F9-52 this was the 51st Falcon 9 launch. Using a v1.2 variant booster, the rocket delivered 10 Iridium NEXT satellites into orbit. This was the fifth of eight planned Iridium NEXT missions.

Iridium-5 Launch 2
The Falcon 9 lifting off from Vandenberg AFB california. After the fog had lifted. Image from SpaceX Flickr.

 

From Vandenberg AFB Space Launch Complex 4 East, the first stage of the rocket lasted 2 minutes 34 seconds, separating a few seconds after. The second engine fired for 6 minutes 23 seconds. This part of the webcast was purposefully cut short due to a NOAA remote sensing licensing requirements. This is an issue with SpaceX not having the right licence to broadcast images from certain parts of space. This burn placed the rocket in a roughly 180 x 625 km parking orbit. The Thales Alenia Space satellite then deployed an hour after launch, after a second brief 11 second burn. This put the satellites into a 625km x 86.6 deg orbit.

Iridium-5 Long Exposure
A 53 second long exposure of Falcon 9 F9-52 launching from Vandenberg AFB. Image from SpaceX Flickr.

The rocket used another “Fairing 2.0”, which is slightly larger than usual, but equipped with recovery systems. These systems include thrusters, a guidance system, and a parafoil. The ship, named Mr Steven has a large net to capture the halves of the fairing. Again, the ship failed to catch one of the fairings, due to a parachute system issue. In a tweet by Elon Musk, it was reported that the GPS guided parafoil twisted so the fairing impacted the water at high speed. He also said that SpaceX are doing helicopter drop tests to fix the issue.

Iridium-5 launch 3
The Falcon 9 launching, with a view of the surrounding buildings and fuel tanks. Image from SpaceX Flickr.

Five of the six previously used Falcon 9 vehicles have been fully expended, this was the tenth flight of a previously-flown Falcon 9 first stage. Four of these ten have been purposely expended during their second flight. The first stage (B1041.2) was previously flown during the Iridium NEXT 3 launch on October 9th, 2017. It performed the 2 minute 34 second boost, and performed what SpaceX call a “simulated landing” into the ocean. SpaceX appear to be only launching a reused stages for one reflight, with the soon to launch “block 5” likely to be reused multiple times. Currently the company only have 4 first stages that might be flown, with one allocated for the upcoming CRS-14 dragon resupply mission.

Iridium-5 mission 1
The Falcon 9 F9-52 launching with the Iridium NEXT-5 satellites aboard. Image from SpaceX Flickr.

Explorer 1 and the Van Allen Story

On February 1st, 1958 at 03:48 UTC (January 31st at 22:48 EST), the first Juno booster launched Explorer 1 into Low Earth Orbit. It was the first satellite to be successfully launched by the United States, and the third ever, after Sputnik 1 and 2 in 1957. Launched from the Army Ballistic Missile Agency’s (ABMA) Cape Canaveral Missile Annex in Florida, now known as Launch Complex 26. The launch played a pivotal part in the discovery of the Van Allen Belt, Explorer 1 was the start of the Explorer series, a set of over 80 scientific satellites. Although sometimes looked over in the history of space, it guided the US space program to what it eventually became.

William Hayward Pickering, James Van Allen, and Wernher von Braun display a full-scale model of Explorer 1 at a crowded news conference in Washington, DC after confirmation the satellite was in orbit.

In 1954 The US Navy and US Army had a joint project known as Project Orbiter, aiming to get a satellite into orbit during 1957. It was going to be launched on a Redstone missile, but the Eisenhower administration rejected the idea in 1955 in favour of the Navy’s project Vanguard. Vanguard was an attempt to use a more civilian styled booster, rather than repurposed missiles. It failed fairly spectacularly in 1957 when the Vanguard TV3 exploded on the launchpad on live TV, less than a month after the launch of Sputnik 2. This deepened American public dismay at the space race. This lead to the army getting a shot at being the first american object in space.

The launch
Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958.

In somewhat of a mad dash to get Explorer 1 ready, the Army Ballistic Missile Agency had been creating reentry vehicles for ballistic missiles, but kept up hope of getting something into orbit. At the same time Physicist James Van Allen of Iowa State University, was making the primary scientific instrument payload for the mission. As well this, JPL director William H. Pickering was providing the satellite itself. Along with Wernher Von Braun, who had the skills to create the launch system. After the Vanguard failure, the JPL-ABMA group was given permission to use a Jupiter-C reentry test vehicle (renamed Juno) and adapt it to launch the satellite. The Jupiter IRBM reentry nose cone had already been flight tested, speeding up the process. It took the team a total of 84 days to modify the rocket and build Explorer 1.

Preparing the explorer 1
Explorer 1 is mated to its booster at LC-26

The satellite itself, designed and built by graduate students at California Institute of Technology’s JPL under the direction of William H. Pickering was the second satellite to carry a mission payload (Sputnik 2 being the first). Shaped much like a rocket itself, it only weighed 13.37kg (30.8lb) of which 8.3kg (18.3lb) was the instrumentation. The instrumentation sat at the front of the satellite, with the rear being a small rocket motor acting as the fourth stage, this section didn’t detach. The data was transmitted to the ground by two antennas of differing types. A 60 milliwatt transmitter fed dipole antenna with two fiberglass slot antennas in the body of the satellite, operating at 108.3MHz, and four flexible whips acting as a turnstile antenna, fed by a 10 milliwatt transmitter operating at 108.00MHz.

Explorer 1 parts
A diagram showing some of the main parts of the Explorer 1 satellite

As there was a limited timeframe, with limited space available, and a requirement for low weight, the instrumentation was designed to be simple, and highly reliable. An Iowa Cosmic Ray instrument was used. It used germanium and silicon transistors in the electronics. 29 transistors were used in the Explorer 1 payload instrumentation, with others being used in the Army’s micrometeorite amplifier.  The power was provided by mercury chemical batteries, what weighed roughly 40% of the total payload weight. The outside of the instrumentation section was sandblasted stainless steel  with white and black stripes. There were many potential colour schemes, which is why there are articles models and photographs showing different configurations. The final scheme was decided by studies of shadow-sunlight intervals based on firing time, trajectory, orbit and inclination. The stripes are often also seen on many of the early Wernher Von Braun Rockets.

NASM flight spare
The flight ready spare of the Explorer 1, now shown at the National Air and Space Museum.

The instrument was meant to have a tape recorder on board, but was not modeled in time to be put onto the spacecraft. This meant that all the data received was real-time and from the on board antennas. Plus as there were no downrange tracking stations, they could only pick up signals while the satellite was over them. This meant that they could not get a recording from the entire earth. It also meant that when the rocket went up, and dipped over the horizon, they had no idea whether it got into orbit. Half an hour after the launch Albert Hibbs, Explorers System designer from JPL, who was responsible for orbit calculations walked into the room and declared there was a 95% chance the satellite was in orbit. In response, the Major snapped: “Don’t give me any of this probability crap, Hibbs. Is the thing up there or not?”.

Explorer 1 Mission Badge
The official JPL mission pac=tch for the Explorer 1 mission.

The instrument was the baby of one of Van Allens graduate students, George Ludwig. When he heard the payload was going into the Explorer 1 (and not the Vanguard) he packed up his family and set off for JPL to work with the engineers there. He has a good oral history section on this link, talking about designing some of the first electronics in space. He was there watching the rocket launch and waiting for results. From the Navy’s Vanguard Microlock receiving station they watched the telemetry that reported the health of the cosmic-ray package. The first 300 seconds were very hopeful, with a quick rise in counting rates followed by a drop to a constant 10-20  counts per second, as expected. The calculations told them when they should hear from the satellite again, but 12 minutes after the expected time, nothing showed up but eventually, after pure silence, Explorer 1 finally reported home.

The Van Allen Belt
This diagram showcases the Van Allen belts, which were first detected by instruments aboard Explorer 1 and Explorer 3. The Van Allen belts were the first major scientific discovery of the space age.

Once in orbit, Explorer 1 transmitted data for 105 days. The satellite was reported to be successful in its first month of operation. From the scientist point of view, the lack of data meant the results were difficult to conclude. The data was also different to the expectations, it was recording less meteoric dust than expected and varying amounts of cosmic radiation, and sometimes silent above 600 miles. This was figured out on Explorer 3 when they realised the counters were being saturated by too much radiation. Leading to the discovery of the Van Allen Radiation Belt. Although they described the belt as “death lurking 70 miles up” it actually deflects high energy particles away from earth, meaning life can be sustained on earth. The satellite batteries powered the high-powered transmitter for 31 days, and after 105 days it sent it’s last transmission on May 23rd 1958. It still remained in orbit for 12 years, reentering the atmosphere over the pacific ocean on March 31st after 58,000 orbits.

Semi Autonomous Robotic Platform

As part of my degree I had to complete a project as part of the third year in the field of robotics and electronics. I chose to make a robotic platform, a simple idea that could be completed to a high quality with the right amount of effort. What is a robotic platform I hear you ask? well it essentially is a small buggy/rover that that moves around an assigned area completing simple jobs such as transporting goods, picking up parcels or any job that needs a moving vehicle. Usually autonomous, and very expensive, the majority of systems are very application specific. Some simple systems without any sort of control system can cost tens of thousands of pounds, and are not easy for the average employee to operate. Tackling the problem of expensive, application specific robotic platforms was the basis of my project.

4WD robotic platform
The Nexus 4 wheeled drive mecanum robot has an arduino based control system, and mecanum wheels, but will set you back $1500

Named the Semi Autonomous Robotic Platform, the idea was very simple, make a modular system, with building blocks that could be easily interchanged, and didn’t cost the world. These modules were things like motor controllers, sensors and power systems. If a user had a working platform built from this system, it would take minimal effort to swap out any of these modules to bigger motors or better sensors. This means a user can make a robot and only buy the bits they need, and even make their own modules, as long as they fit to the standard written as part of the project.

system block diagram
The initial block diagram of the system, showing how the modules can be controlled in hierarchy structure.

In most robotic systems, mainly to keep costs cheap, there is one controller that controls everything. This idea makes sense for small integrated systems that don’t need to change, but doesn’t really work when systems need to be dynamic. For instance, say you decide that your DC motors driving your robot aren’t giving you the control you want. You source some stepper motors, but this means completely changing the motor controller and therefore the software that controls it. Because one controller is in charge of everything, the software for the whole system needs to be re-written, and re-tested. That small change could have affected any of the other systems that that controller is in charge of. Make a change that breaks something important, you could set back a project weeks. This shows how painful a setup like this can be, especially when it starts to become a complex robot. Add on top of that the potential for computer intensive algorithms being used on the robot, like route planning or SLAM, and that controller suddenly has a lot to do. My system design separates these jobs out to a selection of individual controllers, such as a system specifically for motor control, or power systems. These controllers can deal with the nitty gritty hardware, and leave the master controller to orchestrate a higher level version of control.

Final Year Project
My design, near the end of the project, with the mecanum wheels, ultrasonic sensors and multiple controllers.

The added benefit of separating out all these jobs means that multiple engineers can work on the same robot, at the same time on different areas and not be worried about breaking the other person’s design. The system specification defines how the modules interact in terms of communication speeds/type, the way to alert other modules and how those communications are scheduled. The master controller (shown in the system block diagram in green) schedules all these communications and decides which modules need specific information. Warnings, control signals and user inputs are all calculated and scheduled, then communicated to and from the required modules. A power system doesn’t care that a user has pressed a button to scroll through an LCD screen, and the master controller means it doesn’t see it.

The above video shows how the robot moves with its mecanum wheels, and how it can easy move around environments. I will explain the more technical parts of the project in a later post, but this simple idea became a very heavy hardware based project, rather than the software project it started as. I learnt about mechanical design, PCB design and good techniques associated with electronic design. For these reasons, the robot won the “Best Project” award for 2017. Thank you to: Cubik Innovation for help with electronic design, and providing PCBs, VEX Robotics for donating the wheels, and Altium Designer for providing their electronic design software. I would not have been able to produce the robot I did without them.

Arianespace Launches a Successful Soyuz

VS18 liftoff
VS18 taking off from the Soyuz Launch Complex (ELS) near Sinnamary.

At 17:10 UTC on the 9th of March 2018, Arianespace launched its second rocket of the year from Guiana Space Center at Kourou. Designated VS18, the Soyuz rocket launched four O3b Satellites into orbit more than 3 years after the last O3b launch. Controlled by a Russian ground crew from the Soyuz Launch Complex (ELS) near Sinnamary, there was a 33 minute delay to the start because of bad weather. The Soyuz used was a Soyuz 2-1b/Fregat placing the satellite in Medium Earth Orbit (MEO).

The VS18 launch from Instagram
The VS18 launch from the Instagram of Arianespace.

A somewhat complex launch, the first ascent lasted 9 minutes and 23 seconds placing the launcher in a sub orbital trajectory. After separation the Fregat performed a 4 minute burn to reach 160 x 205 km x 5.16 deg parking orbit. Coasting for 8 minutes, the Fregat performed its second burn for 8 minutes and 36 seconds to enter  a 190 x 7,869 km x 3.88 deg transfer orbit. Then after a coast of 1 hour and 21 minutes to the apogee, the Fregat fired for its third and final time for 5 minutes and 6 seconds, to enter its 7,830 km x 0.04 deg insertion orbit.

Poster of VS18 launch
Poster advertising the VS18 launch from the Arianespace website.

After the third burn, the satellites were release two at a time, with opposite satellites released at the same time. The first were released 2 hours into launch, and the second set 22 minutes later after a short firing of the Altitude Control System. The rocket then performed 2 more burns to lower its orbit to 200 km below the O3b release point. This was a disposable orbit, intended so that it will not interfere with working satellites.

The four 700kg satellites
The four 700kg satellites being lowered being loaded into the fairing, before the launch. Image from Arianespace website.
The O3b Satellites being prepared to be transported
One of the O3b Satellites being prepared to be transported to the launch site.

The Ka band satellites are the fourth set of O3b to be sent up, making the total constellation 16. Arianespace intend to launch the next set of four in 2019. “The new Ka-band satellites will join the existing O3b constellation to deliver high-speed connectivity to people and businesses in the growing mobility, fixed data and government markets,” Arianespace officials said in a statement. It was reported that the launch was a success, and the Luxembourg based satellite operator SES Networks now have control of the O3b’s.

The fairing of VS18 ready to launch
The fairing of VS18, ready to be attached to the Soyuz rocket, picture from Arianespace website.

The second launch of the year, Arianespace delayed the launch from the original March 6th launch date. This was postponed to conduct extra checks, likely inspired by the partial failure of the Ariane V earlier this year. On January 25th the company lost contact with the upper stage of the rocket. The 3 satellites on board did reach orbit despite the anomaly, but Arianespace have been quiet on the condition of them.

Launch of VS18 with four Ob3
Launch of VS18 with four Ob3 satellites on board. Image from Arianespace website.

How Going To The Moon Kick-started the Silicon Age

In the late 1950’s, there were three people who were at the epicenter of a huge breakthrough in the world of electronics, the invention of the Integrated Circuit (IC). Jack Kilby of Texas Instruments, Kurt Lehovec of Sprague Electric Company, and Robert Noyce of Fairchild Semiconductor. In August 1959, Fairchild Semiconductor Director of R&D, Robert Noyce asked Jay Last to begin development on the first Integrated Circuit. They developed a flip-flop with four transistors and five resistors using a modified Direct Coupled Transistor Logic. Named the type “F” Flip-Flop, the die was etched to fit into a round TO-18 packaged, previously used for transistors. Under the name Micrologic, the “F” type was announced to the public in March 1961 via a press conference in New York and a photograph in LIFE magazine. Then in October, 5 new circuits were released, the type “G” gate function, a half adder, and a half shift register.

The Type F flip flop
Junction-isolated version of the type “F” flip-flop. The die were etched to fit into a round TO-18 transistor package
Type F life image
Physically-isolated Micrologic flip-flop compared to a dime from LIFE magazine March 10, 1961

These first few integrated circuits were relatively slow, and only replaced a handful of components, while being sold for many times the price of a discrete transistor. The only applications that could afford the high prices were Aerospace and Military systems. The low power consumption and small size outweighed the price drawbacks, and allowed for new and more complex designs. In 1961, Jack Kilby’s colleague Harvey Craygon built a “molecular electronic computer” as a demonstration for the US Air Force to show that 587 Texas Instruments IC’s could replace 8,500 discrete components (like transistors and resistors) that performed the same function. In 1961, the most significant use of Fairchild Micrologic devices were in the Apollo Guidance Computer (AGC). It was designed by MIT and used 4,000 type “G” three input NOR gates. Over the Apollo project, over 200,000 units were purchased by NASA. The very early versions were $1000 each ($8000 today) but over the years prices fell to $20-$30 each. The AGC was the largest single user of IC’s through 1965.

apollo guidance computer logic module
Apollo logic module assembled by Raytheon to be used in the AGC
Type G micrologic
Philco Ford also produced the Fairchild Type ‘G’ Micrologic gate for the Apollo Guidance Computer – this is the flat pack verison

Note that although Fairchild designed and owned the type “G” device, they were mostly made by Raytheon and Philco Ford under licence from Fairchild. Over this time many semiconductor manufacturers such as Texas Instruments, Raytheon and Philco Ford were also making large scale silicon production for other military equipment. These included the LGM-30 Minuteman ballistic missiles, and a series of chips for space satellites. This major investment from the government and the military kick started the development of the increasingly complex semiconductor, and eventually forced the prices low enough for non military applications. The processes improved and by the end of the Apollo program, hundreds of transistors could be fitted into an IC, and more complex circuits were being made. Eventually the costs of adding more transistors to a circuit got extremely low, with the difficulty being the quality of manufacturing. It could be argued that NASA and the Pentagon paved the way for silicon device production as we know it today.

Four Bit Carry Adder/Subtractor Circuit

After creating my 1 bit full adder design found in a previous post, I decided to go for something a little more complicated. I wanted to prove to myself that the ripple carry system worked, so the obvious choice is to make a multi bit device. 4 bits seemed like a good amount, it’s a value used in some early ALU’s so it can be used in a future project. To make it more interesting I added in the ability to make the device a Subtractor at the same time. When you look at the schematic, it only requires one more device per adder, so it’s not even an expensive thing to implement, but adds lots of functionality. As with the 1 bit adder, I have attempted to build this adder using only single logic chips.

4 bit adder-subtractor circuit

The first stage is to know the logic circuit, its widely known and can be found pretty easily all over the web. I’m not going to explain how it’s created (I can always make a separate post on that) but I can describe how to use it. The aim is for the device to take two 4 bit inputs (0 – 15), along with a carry from another adder. So the adder needs to be able to output a value between 0 and 31. In binary this can be shown as 5 bits, so we have 2 outputs. This the S output is a 4 bit bus, and the Co output bumps this up to the 5 bits we need to make 31. A truth table can be made for this but it would be 32 lines long, so too much for this post. You could regard it as a personal challenge if you want to attempt it on your own.

So I got onto Altium and made a schematic of this circuit using some of the low voltage 7400 LVC series individual logic gates that I used on the previous adder I made. They come in SOT23-5 packages which are leaded a nice size to solder. Plus they are a size where it’s possible to probe the pins fairly easily. Luckily Altium shows the components as their logic symbols. Below I have shown the first two adders, the third and fourth are basically the same as the second one, which is the idea of the ripple carry adder.

The first two adders of the four found on the board

I also added a few LEDs to show what parts are on and off. This means the user can see the inputs and outputs. These LEDs run off the 5V input voltage, and have 220Ω current limiting resistors in series with them. Also, I have put in some 0.1 inch header pins so it can be attached into a breadboard and maybe even a micro.

The LEDs for the carry bits and outputs
The LEDs for the input bits

As a base of my circuit, I have decided on a double sided 100mm x 100mm board. This is quite big as you can see for the circuit I have made, but gives plenty of space for a soldering iron to get access. As well as this, it gives a nice amount of space for multimeter probes. I also tried to keep the individual logic chips in a similar arrangement as the schematic. This is meant to be used as a learning device, so it’s useful for the chips to line up with the diagram. The header pins for the inputs and outputs are placed on opposite sides of the board to make it more obvious for the user to see it. And the pins have designators written on the board so the user can see what each pin does. The input and output busses are placed in fairly logical places, and grouped together. There is no point having all the A inputs intertwined with the B inputs. The pins for the power and ground are on opposite sides with their own headers, only one needs to be connected for it to work. The LEDs that are directly attached to the pins are placed closer to the logic circuitry, but labeled clearly on the silkscreen. Most of the routing to the LEDs is on the underside of the board, else the top could get confusing. All the designators for components have been made half the normal size due to the small amount of parts used in the project. The below images show the PCB layout I created with the top copper being red, bottom copper being blue, and the silkscreen shown in yellow.

Top Copper

As you might be able to see, I have tried to keep all the power on the bottom side of the board. This leaves lots of space for the logic signals on the top, where the user is more likely to see. As you can see, most of the inputs and outputs of the circuit are also on the bottom side. This is because the way the busses work and input into the adder needs lots of crossing over and would add confusion into the design. This is why labels were used instead.

Bottom Copper

To make it easier to see, I made a larger image of the first and last adder in the series. As you can see, the only real difference in them is that the first has the add/subtract input shown by an LED, whereas the last shows the carry from the previous adder (C0). This is because the A/D bit is attached to all the adders, but the first bit doesn’t have a carry bit input. The carry on that adder is the input for the A/S. It serves the function of inverting the first bit, so that it works like 2’s complement when in subtract mode.

The layout of the first adder in the series
The layout of the last adder in the series

As noted above I used 7400 LVC series logic gates. The SOT23-5 package chips have the suffix of “BVD”. See the datasheets for each of the devices for more information. I have written a simple bill of materials below:

12x SN74LVC1G86DBVT – XOR gate
8x SN74LVC1G08DBVT – AND gate
4x SN74LVC1G32DBVT – OR gate
17x DO-214 LED’s
17x 0805 220Ω resistors
6x 5-pin 0.1″ header pins

The main downside to this type of adder is that is is very slow. Especially when you get to high bit amounts that you are trying to add. This adder will take at least 4 times as long as a single adder to add the two numbers together because the signal has to propage through 4 full adders. This problem is known as propagation delay, each logic chip will take a very short time to compute the output. Although this time is not perceivable by the human eye, if there are 100’s of logic gates in a row, then the delays start to add up and be a problem. If this circuit is to be used in a computer, it could need to make calculations thousands, or maybe millions of times a second, and a carry bit adder is not generally good at that. There are other, faster adders that I will show in a future post.