Taking a Selfie on Mars

Curiosity in a dust storm
An image shared by Seán Doran on Sunday of the Mars Curiosity in the middle of a dust storm reported to cover an area the size of the US and Russia Combined. CredIt: NASA/JPL/Seán Doran.

Curiosity is a famous, car sized rover currently exploring Gale Crater on Mars. Famous because it has an impressive track record. Landing on Mars in August 2012, the rover was designed to last 687 days/668 sols (martian days) but was extended to indefinitely in December 2012. Although at the time of writing it is trying to wait out a dust storm that has forced Opportunity into a deep sleep, it is still going strong to this day, and has managed to even take a selfie while waiting for it all to blow over. That is over 2100 earth days, still functioning and completing chemical analysis on soil from 560 million km (350 million mi) away!

Mars Curiosity Rover MAHLI
The Mars Hand Hand Lens Imager (MAHLI) on NASA’s Curiosity Rover, taken by Curiosities Mast Camera on the 32nd martian day. Credit: NASA/JPL.
Curiosity first space selfie
The first selfie that Curiosity took of itself with its MAHLI camera with it’s dust cover closed. Taken September 7th, 2012. Credit: JPL/NASA.

Even though this impressive piece of engineering has been collecting samples and completing scientific experiments for over 5 years, the rover still has time to take the occasional selfie. It has a 2.1m robotic arm, and a sophisticated camera (MHLI) mounted on the end of it. The obvious thing you will notice about the images is that you can’t see the arm taking the image. To many of the NASA sceptics and flat earthers this is conclusive proof that the rover is in a film studio somewhere in California rather than on our nearest neighbour planet. At first glance you can understand the problem, where is the arm? The first clue is that the arm isn’t in the picture at all, and when you see the images taken of it here on Earth you can see it is a very prominent feature.

Mars Rover selfie October 2012
The Curiosity Rover taking a selfie at “Rocksnest” a sand patch on the surface of Aeolis Palus, between Peace Vallis and Aeolis Mons (“Mount Sharp”) Taken in October 2012, not long after landing. Credit: NASA/JPL.

The simple answer was explained by NASA/JPL when these questions came up after the first self shot. As the Curiosity camera has a limited view, it cannot get the entire rover into one shot, and even when it does, it looks slightly odd depending on the angle. This is also a problem that they have when taking images of the martian landscape. To get round it, the camera takes many images at differing angles. The images can then be stitched together in photoshop by engineers. They did something similar when putting together images of the moon taken by satellites. As the following image posted by NASA shows, the arm has to move during the changes in camera location, often moving out of frame. Even when the arm is slightly in an image they tend to cover it with another image, so it doesn’t confuse the people looking at it. The selfie would look odd if it had more than one arm showing.

Even though they take care to put together the images in a way that dont look like many stitched together there are still sometimes some inconsistencies. Notice that in the next image the shadow of the arm is still in the image, and there is a slight ghost of the arm below the rover. As you can see below this shot too 72 images stitched together to be made. 20 of those images, over 2 tiers just make up the horizon. Selfies are generally taken at each new drill site, as part of an overall effort to document the trip and of that site. The entire picture taking sequence has now been automated, and tested rigorously on the second identical rover that is here on Earth. If the rover were to take the multiple pictures from individual commands the process would be too long and drawn out.

Mars Rover Selfie August 2015
The Mars rover from a different lower angle. Taken at “Buckskin” on Aeolis Mons on
Mars. Taken on Aug. 5, 2015, during the 1,065th Martian day. Credit: NASA/JPL.
Mars rover selfie component images
The 72 images taken by the rover over the period of an hour. Credit: NASA/JPL/MSSS/Emily Lakdawalla.

There are at least 7 of these selfies taken over the years, all from a very similar angle. The big thing to notice is the difference in the rover itself. Over time it slowly gets covered in more and more dust, starting to blend in with the martian soil behind it. The saddest part to see is the slow deterioration of the wheels. There are small holes developing and getting bigger in the metalwork on the wheels, and in some images they can seem prominent. Either way, these selfies show a slight human side to the robot. There are many people throughout Twitter that anthropomorphize Curiosity and its predecessors, wishing them well on their journey.

Mars Rover selfie September 2016
A slightly newer selfie taken at “MurrayB” a named rock on
Aeolis Mons in Gale Crater. An awesome image taken in September 2016. Credit: NASA/JPL.

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.


Atlas V Launches InSight

Atlas V on the pad
The Atlas V on the launch pad at vandenberg AFB in California, Credit: ULA flickr.

At 11:05 UTC on May 5th 2018 the forth Atlas launch of the year launched the long awaited InSight mission on a course for mars. Launching from Vandenberg Air Force Base the AV-078 (the launch designation) was an Atlas V in 401 configuration. It was the first interplanetary launch from the west coast of the United States. Liftoff of the Atlas V with a 4m payload fairing was from Space Launch Complex 3 East.

Sam Suns first tweet
An awesome photo of the launch that blew up on twitter, taken from the sky. Credit @BirdsNSpace on Twitter.

The rocket had one main payload, the InSight Mission and two CubeSats. InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is a robotic lander designed to study the interior of the planet Mars.  I weighed 694 kg at launch, including a 425 kg fueled lander. The lander carries a probe that will be hammered 15m into the Mars surface, a seismometer, a magnetometer (first expected to land on the surface of Mars), a laser reflector, along with other instruments. The lander also has a robotic arm to move payloads around, but there will be another post in the future discussing the instruments in more detail. The two CubeSats on board are known as MarCO-A and MarCO-B, each weighing about 13.5 kg. They will fly by Mars while conducting a data relay experiment with InSight.

Insight Fairing
The 4m payload fairing on top of the Atlas V containing the InSight payload. Credit: ULA Flickr.

The design of InSight was developed from the 2008 Phoenix Mars Lander. The previous lander was launched on Delta 2 rockets compared to the Atlas V, both built and launched by the United Launch Alliance. The Atlas V does have excess capability for the mission (slightly overkill) but this allowed it to be launched from Vandenberg AFB. Previous solar orbit missions (like this one) were launched from the Cape to gain the site’s eastward earth rotational velocity. Vandenberg launches have to fly south or westerly direction across the Pacific Ocean. InSight was originally planned to launch in 2016 but was delayed to 2018 due to the main instrument failing.

Liftoff od Insight
The Atlas V lifts off, unfortunately the fog rolled in so very few great shots were taken by the remote cameras. Credit: ULA Flickr.

AV-078 started on a 158 degree azimuth, aiming towards a 63.4 degree Low Earth Parking Orbit. The LOX/RP-1 fueled RD-180 powered first stage fired for 4 minutes and 4 seconds. The Centaur’s RL10C-1 LOX/LH2 engine then fired for 8 minutes and 48 seconds to reach the parking orbit. It then coasted for 65 minutes and 40 seconds then performing a second, 5 minute and 23 second burn to accelerate into a trans-Mars solar orbit. Insight separated 9 minutes after at about T+1 hour, 33 minutes and 19 seconds. The CubeSats separated shortly after.

Aaron Colier Atlas V launch
An awesome long exposure shot of the launch taken by Aaron Collier. From roughly 85 miles away. Credit @aaroncollier96 on Twitter.

Atlas 5 Launches a Trio of Spy Satellites

Atlas 5 taking off
Atlas 5 lifting off from pad 41 at Cape Canaveral Air Force Base. Credit: @marcuscotephoto on Twitter

At 23.13 UTC on April 14th 2018 the third Atlas 5 launch of the year fired multiple military satellites into a near geosynchronous orbit. Launching from Space Launch Complex 41 at Cape Canaveral, FL,  the AV-079 (the launch designation) was an Atlas V in 551 configuration. The rocket had 5 solid rocket motors, a Centaur second stage powered by a single RL10C-1 LOX/LH2 engine, and a 5m diameter payload fairing. The entire mission lasted approximately 7 hours and is known as Air Force Space Command (AFSPC) 11 mission.

The Atlas 5 AFSPC11
The Atlas V carrying AFSPC11 for the Air Force Space Command. Credit: United Launch Alliance Flickr.
the smoke trail
A smoke trail left by the Atlas V as it launches a trio of spy satellites. Credit: @marcuscotephoto on twitter.

The mission lifted two primary satellites for the Air Force, one stacked on top of the other. On the top was CBAS (Continuous Broadcast Augmenting SATCOM) an abbreviation within an abbreviation, and a military communications satellite. The second satellite was named EAGLE (ESPA Augmented GEO Laboratory Experiment) which is an abbreviation with two abbreviations in it! This satellite is based on an Orbital ATK ESPA bus, it is a research laboratory that can host 6 deployable payloads. It is said that EAGLE likely weighed around 780 kg. There was also a subsatellite named “Mycroft” reported to be on the flight, but not confirmed.

The fury of the Atlas V
The fury of the 5 solid rocket boosters found on this Atlas V. Credit: United Launch Alliance Flickr.

The Solid motors finished their burn and seperated 1 minute and 47 seconds after liftoff. The first stage,  an RD-180 rocket fired for 4 minutes and 33.5 seconds. Centaur then performed 3 burns which were not shown on the livestream. The first burn was meant to last 6 minutes 1 seconds to reach a low earth parking orbit. The second burn began 12 minutes and 6 seconds after the first cutoff, and last 4 minutes and 49 seconds, putting the vehicle into a geosynchronous transfer orbit. After a 5 hour and 6 minute apogee, a third burn of 2 minutes and 36 seconds completed the insertion to the planned orbit. A spacecraft separation extended for another 1 and a half hours to T+6 hours 57 min 24 sec.

Atlas v launchpad
Atlas V rolling to the launchpad at Space Launch Complex 41 at Cape Canaveral AFB. Credit: United Launch Alliance Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

The Latest Atlas V Launch GOES-S Well

The Atlas V launch
The Atlas V launch taken by @marcuscotephoto on twitter.

At 22:02 UTC on March 1st 2018 the Second Atlas V launch of 2018 fired the 5,192kg GOES-S satellite into orbit. Launching from Space Launch Complex 41 at Cape Canaveral, FL, the AV-077 (the launch designation) was an Atlas V in 541  configuration. GOES-S, an A2100 series satellite built by Lockheed Martin, was separated 3.5 hours into the mission into a 8,215km x 35,286km x 9.52 deg Geosynchronous Transfer Orbit (GTO).

Atlas V launch
Atlas V launch from Launch Complex 41 at Cape Canaveral, FL. Image from @NOAASatellites Twitter.

The second of a new generation of weather satellites for the United States, GOES-S follows in the footsteps of GOES-East, now renamed to GOES-16. A huge jump in satellite capability, the new set of satellites cover from eastern Japan all the way over to west Africa, as well as parts of the Arctic and Antarctic. They can detect storms faster, see lightning and even have sensors to detect solar storms. The satellites were commissioned by the National Environmental Satellite, Data and Information Service (NESDIS) who manage the National Oceanographic and Atmospheric Administration (NOAA) constellation of environmental satellites. For more images and information follow them on twitter @NOAASatellites.

The new generation of weather satellites
Image showing the difference between GOES-16 and the previous version, GOES-13. Image from @NOASatellites twitter.

There are versions of the livestream on Youtube, and a highlight reel on the ULA Youtube page. They are definitely worth a watch if you want more information from the engineers themselves.

Atlas V launch
Atlas V launching the GOES-S satellite on March 1st 2018. Image from @NOAASatellites Twitter
The Atlas V just taking off
The Atlas V just taking off, Image from @NOAASatellites

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com