How a Voltage Regulator Works: LM7805

Voltage regulators are one of the first electronic components you get introduced to as a hobbyist. Really useful when starting out, it simply takes a voltage that is too high, and reduces it down to a set voltage that you want, usually defined by the component. Solves the problem of having batteries or power supplies being a different voltage to the thing you are powering (such as your Arduino), and at as little as 50p from ebay they are easily acquired. Sounds like a great solution, but there is an issue, they are terribly inefficient. They are known to get very hot when used at high currents, and often need hefty heatsinks to stop the magic smoke from being released. To demonstrate why they get so hot we need to think about what happens during use. Remembering Kirchoff, the current going into a system is the same as the current going out of the system. If we use a simplified version of the regulator, the only thing this device changes is the voltage of the output. Due to the minimal current lost powering the circuit we assume the vast majority of power lost is in heat. Using the basic equation of:

Power (W) = Voltage (V) x Current (I)

So if we use an example of the LM7805 made by On Semiconductor (previously Fairchild) that can regulate 5V at 1A. It’s a pretty standard component, and is very typical of a voltage regulator.

If we use a 9V input the power going in is 9V x 1A = 9W.

The output power is 5V x 1A = 5W.

This means that there is 4W of power being dissipated from the regulator as wasted heat. This is a large amount when considering the size of the packages available. When thinking about problems excessive heat can cause in a circuit, it can quite easily damage itself and other components around it when not designed properly. It is why there are often big chunks of aluminium attached to the back of the components to act as a heat sink.

7805
7805 chip in a TO-220 package. Notice the heat sink on the rear with a screw mount.

This post isnt meant to dissuade you from using regulators, they have their place in electronic circuits, and are a great starting point. All electronic engineers need to have a broad understanding of the advantages and disadvantages of linear voltage regulators to be able to handle them properly.

How it Works

LM78xx schematic 2 coloured
Schematic of the silicon inside an LM78xx device, coloured relating to the function of each area.

The above schematic can be found on the datasheet, but it’s been coloured in to show the different sections of the circuit.

The most important component in the above schematic is Q16 (Red), it controls the current between the input and output, therefore the voltage. It is placed in a darlington pair configuration with Q15 (Orange). In this configuration Q16 is amplifying the current amplified by Q15. This means that Q15 can be used to introduce error feedback. The Blue section contains a voltage divider that scales the output voltage so that it can be used by the bandgap circuit. This bandgap circuit is found in the yellow section (Q1 and Q6). This bandgap reference produces an error signal that is fed into Q7 (orange). A bandgap is used because it can provide a stable output even when the temperature of the device changes.

The orange section takes this error and amplifies it through Q15 and the darlington configuration described earlier. The purple section has overheating protection (Q13) and excessive output current protection (Q14). Occasionally on these schematics you also find excessive input voltage protection marked as Q19 in this section. These shutdown the regulator in fault conditions like overcurrent or getting too hot. The Green section is known as the “start up” circuit, because it provides the initial current needed to power the bandgap circuitry. This gives a jumpstart to the circuit when it needs it.

I chose the LM7805 because 5V is a common value to be used, but the LM78xx series has many different preset voltage versions. The bandgap circuit is trying to get its input to 1.25V, this is from the voltage divider found in the blue section. As R20 is a variable resistor, the voltage divider can be calibrated during manufacture to output exactly 1.25V at any chosen output voltage. This is great for a manufacturer because they make lots of the same chip, and it can be made to suit any voltage output they want. This is also similar to the way some adjustable voltage regulators work, such as the LM317. In adjustable chips, the voltage divider is made by the designer externally, meaning it can be applied to any situation with a simple change of resistors.

Basic Configuration

Looking at the datasheet, there are many applications for the device. but the simplest one is just an input and an output. All that’s needed is a couple of decoupling capacitors to smooth out AC signals and random noise. Voltage regulators work best with clean, smooth power. There is also the need, due to the voltage drop across the transistors, for the input voltage to be at least 2V above the required output. This is always a good rule of thumb to go by when it comes to regulators.

LM78xx basic configuration
LM78xx basic configuration

I would recommend people read the datasheet and have a play with different voltage inputs and current outputs, see how easy it is for it to get hot. In that datasheet there are some other good applications using the device, you can turn it into an adjustable voltage output, constant current supply and high current supply. These are also good projects for learning more about transistors and op amps. Equally, there are other types and brands of regulator out there, some cheap, and some quite expensive, it is worth shopping around for  the ones that suit you.

Interfacing a PIC and a 16×2 LCD

So in a recent project I had to implement a 16×2 LCD  on a PIC16F1827, but the system will work on most PIC microcontrollers, with slight changes to the code. For this project I am using MPLAB X v3.40, a free development environment, and a PICKIT 3, which can be bought at a number of stores online.

Setting up the MPLAB project

  1. Start off by loading up MPLAB X, if you don’t have it already, install it from the Microchip website microchip.com/mplab/mplab-x-ide.
  2. Start a new project, by going to File->New Project… or by pressing Ctrl+Shift+Nnew project
  3. The project we want is a standalone project, it should be chosen by default. Next choose the device we want, write in the box PIC16F1827 there should only be one. We want to use the PicKit 3 for the programmer. I am using XC8 as the compiler, this is available from the Microchip to9 stawebsite. Finally choose the name of the project, and where you want to keep it. Then click finish.
  4. It wont look like mush at the moment, but under Projects on the right, there should now be your newly created project, with a drop down, and a set of folders. Something like this: 
  5. To start the project, we need a main.c. So right click on Source Files, go to New->C Main File… then in the Dialog, change the name to main. After pressing okay, it should look like this: 

Connecting the LCD

LCDs have what is known as a parallel connection. This means that we send data 8 bits at a time, rather than serial where it is one at a time. The datasheet for the PIC is found on the microchip website here. The pinout is found on page 4.

PIC pinout

Register Select (RS) pin, this decides which of the two registers that is getting written to. Either the instruction register (what the screen does) or the data register (what is shown on the screen). This is connected to A4 on the PIC.

Read/Write (RW) pin, this decides whether you are writing to or reading from the LCD. This is connected to pin A3.

Enable (E) pin, is to tell the LCD when data needs to be transferred. Pulsing this pin will write or read to the registers the data on the data pins. This is connected to pin  A2.

These pins are defined at the top of the code, to make life easier for us later on.

#define LCD_RS LATAbits.LATA4   //LCD Command/Data Control
#define LCD_RW LATAbits.LATA3   //LCD Read/Write Select
#define LCD_E LATAbits.LATA2    //LCD Enable Line

Data Pins (D0-D7), are the pins that transfer the information between the LCD and the PIC. These are connected to pins B0-B7. So B0 is connected to D0, and so on until B7 is connected to D7.

Vdd and Vss are connected to 5v and GND respectively.

Contrast (Vo) is connected to a 10k pot between the 5v  and  GND.

If the LCD you are using has connections for a backlight, follow the datasheet for instructions, on mine I connect it t0 5v and GND.

The Code

Below is the function I create to send data to the LCD.

#define LCD_CMD 0
#define LCD_TXT 1 

void LCD_DATA (unsigned char data, int type)
{
    __delay_ms(100);   // short delay

    LATB = 0x00;       // reset the register to 0
    LATB = data;       // set B output to the data we want to send
    __delay_ms(1);     // short delay for data to set

    if (type == LCD_CMD)
    {
        LCD_RS = 0;    // command mode
    }
    else
    {
        LCD_RS = 1;    // character/data mode
    }

    LCD_RW = 0;        // start the pulse
    __delay_ms(1);     // small delay
    LCD_E = 1;         // enable LCD data line
    __delay_ms(1);     // small delay
    LCD_E = 0;         // disable LCD data line
    __delay_ms(5);
}

Calling this function in the main, like follows will send data to the LCD. Notice the #define at the top, these are declaring LCD_CMD and LCD_TXT. Basically, when the type is LCD_CMD the LCD is sent into command mode, by setting the RS pin. Equally, sending LCD_TXT will clear the RS pin, putting the LCD in character mode.

The information on the data pins will then get written to the LCD, by clearing RW. To actually tell the LCD that it needs to be sent new instructions the enable pin needs to be pulsed. Once this happens, the screen should be updated with the new information.

#include <stdio.h>
#include <stdlib.h>
#include <xc.h>

#define _XTAL_FREQ 500000

#define LCD_RS LATAbits.LATA4   //LCD Command/Data Control
#define LCD_RW LATAbits.LATA3   //LCD Read/Write Select
#define LCD_E LATAbits.LATA2    //LCD Enable Line

#define LCD_CMD 0
#define LCD_TXT 1 

void LCD_DATA (unsigned char data, int type)
{
    __delay_ms(100);   // short delay

    LATB = 0x00;       // reset the register to 0
    LATB = data;       // set B output to the data we want to send
    __delay_ms(1);     // short delay for data to set

    if (type == LCD_CMD)
    {
        LCD_RS = 0;    // command mode
    }
    else
    {
        LCD_RS = 1;    // character/data mode
    }

    LCD_RW = 0;        // start the pulse
    __delay_ms(1);     // small delay
    LCD_E = 1;         // enable LCD data line
    __delay_ms(1);     // small delay
    LCD_E = 0;         // disable LCD data line
    __delay_ms(5);
}


int main(int argc, char** argv) {
 
    // write "hello world!" on the first line
    LCD_DATA('h', LCD_TXT);
    LCD_DATA('e', LCD_TXT);
    LCD_DATA('l', LCD_TXT);
    LCD_DATA('l', LCD_TXT);
    LCD_DATA('o', LCD_TXT);
    LCD_DATA(' ', LCD_TXT);
    LCD_DATA('w', LCD_TXT);
    LCD_DATA('o', LCD_TXT);
    LCD_DATA('r', LCD_TXT);
    LCD_DATA('l', LCD_TXT);
    LCD_DATA('d', LCD_TXT);
    LCD_DATA('!', LCD_TXT);
 
    while (1)
    {
 
    }
 
 return (EXIT_SUCCESS);
}

Current Sensing: High Side vs. Low Side

Occasionally, you will be designing an electronic project, and there will be a need to to measure the current being drawn by a particular section, or  even the whole thing. When designing, prototyping, or even testing the design you can use a calibrated multimeter. In the field though, or inside a real product, how can you monitor current.

A very popular way is to use a very low value power resistor in series with the load you want to measure. As current flows through it it will induce an e.m.f (voltage) across the resistor. This resistor voltage can then be measured by an ADC in a microcontroller. The value will be linearly proportional to the current running through it. Using Ohm’s law you can deduce that the voltage across the the resistor is equal to the currentresistance. As the resistor may be slightly off, the device might need calibration.

An issue with this though, you want the minimum voltage drop possible across the resistor. This reduces power loss, and minimises the effect you will have on the load. For this reason a very small resistor needs to be used. There are plenty of resistors out there for this purpose, known as shunt or sense resistors. This tiny voltage could be as small as 0.1v, or maybe even lower, way too small for a standard ADC to pick up reliably. For this reason There is a need for an amplifier, to multiply this voltage by 20 or 50 times. This enables the swing to be measured across the range of the ADC. So if you have a 5v ADC, and the maximum voltage across the resistor will be 0.1v, the amplifier will need to have a gain of 50. There are two main categories of current sensors like this, High side and Low side.

schematics-project-1

The above image shows the basic configuration of these two types of measurement. The difference is based off on the location of the sense resistor. Low side sensing is between load and ground, with high side sensing between power and the load. It shouldn’t make much difference, the voltage across the Sense resistor will always be the same.

One reason for not using the the low side method is for the fact it is based off the ground reference. If anything between the power and the high side of the load is shorted, the current sensor wont pick it up. It is just one thing thing that you can’t then implement into your design.

Also be careful when choosing the amplifier and the resistors you intend to use. There are many amplifiers on the market designed for this specific purpose. The TSC101 is an amplifier I recently included in a project, for this exact purpose. A high side current sensor, with a precision trimmed preset gain of either 20, 50, or 100. Adding in a laser precision trimmed power resistor to this, and there is an output for a microcontroller, a very simple current sensing application. for less than £2 in your application.