The Exoplanet Hunter TESS Launched by Falcon 9

TESS taking off
The Falcon 9 taking off from SLC-40 at Cape Canaveral with TESS on board. Credit: SpaceX Flickr.

On April 18th, 2018 at 22:51 UTC a Falcon 9 took off from Launch Complex 40 at Cape Canaveral AFB. Aboard was NASA’s latest research satellite TESS. A mission that cost $337 million, Transiting Exoplanet Survey Satellite (TESS)  is the latest in a line of space based observatories that are set to launch this decade. Launched into an arching elliptical orbit that will take the spacecraft over two thirds of the distance to the moon. The first stage of the Falcon 9 landed on the autonomous drone ship Of Course I Still Love You to be refurbished and reused.

falcon 9 engines
The sheer power of the Falcon 9’s nine Merlin 1D engines produce an awesome inferno. You can clearly see the 45 written on the side as the booster designator. Credit @marcuscotephoto on Twitter.

After a 5 day checkout of the spacecraft, basically a hardware check, the ground controllers will switch on the TESS cameras. TESS is designed to scan around 85% of the sky during the two year mission, with astronomers estimating as many as 20,000 new planets could be found. It plans to build on discoveries made by NASA’s Kepler telescope which was launched in 2009 to find earth like planets. TESS carries four 16.8-megapixel cameras, and will look for dips in light coming from 200,000 preselected nearby stars. The four cameras cover a square in the sky that measures 24 x 24 degrees, wide enough to fit the Orion constellation into a single camera. the cameras together study a set area of sky for 27 days before staring at the next section.

TESS orbit
An illustration of the orbits that TESS will go through to get to the final orbit P/2. Credit: NASA.

The orbit TESS is being launched into is known as P/2, and requires time and finesse to reach. TESS will slingshot by the moon at a distance of around 5,000 miles (8,000 kilometers), using gravity to reshape its orbit, increasing the satellite’s orbital perigee, or low point, to the final planned altitude of around 67,000 miles. After the lunar flyby, the high point of the satellite’s elongated orbit will stretch well beyond the moon, and another thruster firing will nudge TESS into its final orbit in mid-June. Science data is planned to start in july, with the first year of the two year campaign aimed at the stars in the southern sky. TESS has been built to have enough fuel to last 20 or 30 years, assuming funding by NASA and the components on board continue to function correctly.

the TESS telescope
The TESS satellite before launch, the four cameras can be seen on the top of the spacecraft; Credit: NASA.

Each of TESS’s cameras have four custom built re-sensitive CCD sensors designed and developed by MIT’s Lincoln Laboratory. The sensors are claimed to be the most perfect CCD’s ever flown by a science mission. The lenses used by the cameras are only about 4 inches (10mm) wide, meaning it has a fairly low light collecting power compared to other space telescopes. The James Webb Space Telescope for example launching in 2020 had a 21.3ft (6.5m) primary mirror, although the satellite has cost over $8 billion to make. TESS is a bit like a finder telescope, it will lay a bedrock for future missions such as Webb and ground based observatories to make better readings. It gives a good idea of the best places to look, where the most likely exoplanets are.

launch of TESS
The Falcon 9 launching the Transiting Exoplanet Survey Satellite to an orbit of P/2. Credit: SpaceX Flickr.

TESS works by looking at a star, in this case mainly M-dwarf stars, which are cooler than our sun. They are also known as red dwarfs and make up most of the stars in our galaxy. When a planet goes in front of the star the light received by TESS “dips” and changes slightly in colour. This change in the light it receives can tell scientists alot about the size of a planet, and other things like density and velocity. They expect TESS to find between 500 and 1,000 planets that are between one and three times the size of Earth, and 20,000 planets the size of Neptune or Jupiter. The readings will give a good idea of where to focus on and ‘follow up’ on future missions. Then missions such as JWST can probe and use more complex tools to find information such as atmospheric composition, and whether they could be habitable.

long exposure TESS
A long exposure of the Falcon 9 taking off over the SpaceX hangar at Cape Canaveral. Credit: SpaceX Flickr.

The Falcon 9 used was a v1.2 with designation F9-54. It used a brand new “Block 4” first stage. The booster designated B1045 has a clear 45 written on the side in some of the close up booster images. The fist stage boosted for 2 minutes and 29 seconds, then detaching and slowing itself down. The booster landed downrange on the autonomous drone ship “Of Course I Still Love You”. The first successful drone ship landing since October 2017. A total of 24 Falcon 9 or Falcon Heavy booster stages have now been recovered in 30 attempts. Four of which were on “Just Read The Instructions” off the coast of California, ten at Cape Canaveral Landing Zone 1 and 2, and nine on the autonomous drone ship “Of Course I Still Love You” off the Florida Coast. 18 first stages have been recovered, 11 of which have flown twice, five have been lost during their second flight. B1045 was the last brand new “Block 4” Falcon 9 booster.

TESS taking off
An awesome photo of a Falcon 9 taking off from across the water, a perfect day for pictures! Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

Leave a Reply

Your email address will not be published. Required fields are marked *