The Genius of Bob Widlar

National Semiconductor Ad
A famous National Semiconductor ad based on the Widlar Salute and methedology

If you are at all interested in early IC design, especially that in the start of silicon valley, it’s likely that you will have come across the name Bob Widlar. If you have not heard of him then this post may shed some light on an early pioneer of the semiconductor industry. Not just a great hardware engineer, arguably a legendary one. Shaping integrated circuit designs for over a decade he created circuits still in use today, and some of the most famous chips ever. Including the uA702, the first linear IC operational amplifier and the LM109, the first high power voltage regulator. Although a great engineer he was famous for his pranks, and odd office habits. He definitely would not like the current state of corporations, with a bohemian look on life Bob Widlar can definitely be described as eccentric.

Bob widlar salute
Bob Widlar showing the official Widlar salute.

In the late 1960’s and 70’s the semiconductor industry was like something out of a scene in a wild west film. The bars around Silicon Valley were packed day and night with engineers creating innovative circuits and designs left and right, and Bob was right there in the middle of it all. I think a key point to note is that he was partial to his alcohol, for better or worse there are accounts that he wouldn’t make a speech until the had his allotment of scotch or wine. This wasn’t uncommon for the time though, everyone around him was likely the same. The History of Semiconductor Engineering (a very expensive book) describes, “Bob was a fiercely independent individual, very happy to be by himself, and he did everything in a stunning way, which was absolutely natural to him, but completely weird to so-called ‘normal people’.” Basically he didn’t care what other people thought about him. If you want to change an entire industry you have to upset a few people on your way, so this mindset might be best.

Bob Widlar disliked digital circuitry
It could be said that Bob widlar was not a fan of digital circuitry.

There isn’t much known about his early life, and reportedly rarely spoke about it. We do know thought that electronics played a huge role in his early life as his dad was a self taught radio engineer. His father worked at a local radio station so Bob had access to ultra-high frequency transmitters. At 15 he was featured in his local newspaper as an electronics designer who could fix radio and TV sets. Allegedly he also played pranks on the local police using radios, but there is no known details. The passion for electronics continued on when he joined the United States Air Force in 1958. He was responsible for teaching fellow recruits in the use of electronic equipment such as radios. During this time he actually wrote a book, his first, Introduction to Semiconductor Devices. This seems to be a slightly different person to the famous side of Bob Widlar. Some say that his “liberal mind” wasn’t a good fit for the military environment, but his early performance reviews suggest otherwise. His superiors noted his superior electronics and communications skills, they also noted that he had an above average ability to use clear concise words to express himself, and always strived for perfection. In areas of improvement he was recommended to stop dramatising his frustrations at inefficiencies that exist”. This might be closer to the famous widlar. He then left the service in 1961 for unknown reasons, and joined the Ball Brother Research Corporation in Boulder, Colorado. There he helped develop analog and digital equipment for NASA. He was simultaneously studying for a degree with the University of Colorado and graduated in the summer of 1963.

His work at Ball Brothers brought him in contact with Jean Heorni and Sheldon Roberts (who invented radiation hardened transistors), some of the founders of Fairchild Semiconductor. They breached professional ethics by hiring him, a key employee of their customer. He apparently arrived at the interview intoxicated and told the R&D manager what he thought of Fairchild’s analog circuits, saying”what they are doing is bullshit”. He had a second interview and was hired even with the objections by the initial interviewers. His first task at Fairchild was to target IC reliability by improving the fabrication process. He managed to reduce the price of the planar process, and showed he could improve his own bosses designs and squeezed him out of the company. At this point Fairchild only had a lineup of three analog IC’s, all designed for the military, all amplifiers. They were all built inefficiently, like a conventional circuit with discrete devices, creating a sort of hybrid IC. The famous Gordon Moore (of Moore’s Law fame) wanted the company to favour digital IC’s as they were cheaper, easier to design and allowed high volume. Widlar opposed the strategy and held digital electronics in low esteem, famously saying “every idiot can count to one”. Along with the process engineer David Talbert, they rushed through Widlars designs for new and improved analog IC’s, changing the industry as they did so. He managed to remove the need for big resistors and capacitors in IC’s, and truly grasped the planar process. This is when he created the μA702, the first true linear integrated circuit, and the first monolithic operational amplifier.

Bob and a group of engineers at National Semiconductor.

He also created the μA709, another legendary chip. This moved Fairchild to become the leader in the field of linear IC’s. Their circuits were sold out for two years. Some say that at one point Widlar designed and Talbert made 80% of the linear circuits in the world. The problem was that Fairchild never shared the massive profits with them. So he took up a job with National Semiconductor in 1965, taking a huge amount of stock as part of the deal. He refused to do the exit interview at Fairchild and wrote one line to them “I want to be RICH!”. Oddly, Fairchild continued to pay his salary until 1966, Widlar said “Maybe they did not believe that I was actually leaving. Some people are really a little slow.” By 1966 they had set up the epitaxial process at Santa Clara, and created the industry’s first linear regulator. The LM100, a revolutionary new circuit became a flagship product, soon followed up in 1967 with the LM101, an op amp with highly improved performance due to a simple yet robust design. He followed it up with many more improvements to amplifiers, with higher bandwidth, voltage and gain. As well as the famous Widlar current source, he also managed to harness the bandgap phenomenon and built the bandgap voltage reference. This allowed the design of the LM109, a voltage regulator with a power transistor and precise voltage source on one die, something never seen before. By this time Fairchild had gone into a massive decline while National Semiconductor had rocketed up the food chain. In December 1970 he resigned from National Semiconductor and cashed in his stock for $1 million, apparently due to payment issues. He retired to Puerto Rico at the age of 33. The next four years he spent as a consultant.

Widlar current source. Original drawing from the 1967 U.S. patent.

He did come back to National Semiconductor in 1974 as a consultant. During the short stints he spent there he developed the LM12 power amplifier and and the LM10 ultra-low voltage amplifier. These have stayed in production until the 21st century, with the LM10 not even having a reasonable clone for the next decade. in 1981 he spent three years starting Linear Technologies, but this relationship eventually fell apart three years later over patent rights, and his shares were forcibly bought. For the remainder of his life he worked at National semiconductor until 1991 when he died of a heart attack at the age of 53. He had apparently taken up running late in his life and was much healthier. One of his fellow engineers Bob Pease said the damage was done in the first 20 years.

Bob Widlar standing over artwork of the LM10 power amplifier

On top of his famously eccentric nature, fighting in bars and unceremoniously leaving companies he was a well known prankster. The most famous one was the day he brought a sheep to work. The reason was to save money for the company by using it as a lawn mower. He brought it in the back of his Mercedes-Benz convertible for the day. The management not particularly pleased refused to comment. Widlar even invited some young photojournalists to document the event. After the day he left the sheep in a local bar and it was “mysteriously stolen”. On another note he apparently disliked people coming into his office and being excessively loud. He therefore built what is now known as a Hassler circuit which emits a high pitched sound whenever it hears something too loud. In the same vein he also blew up a public address speaker he found annoying with firecrackers! As an analog engineer and highly skilled with high frequency transmitters he once traced one of his problems to interference from the control tower of San Jose airport. In the Widlar way he called up the airport and demanded that they shut down the transmitter. He did have a thing about faulty components and problems, as any electronic engineer can appreciate. If he had spent a day trying to fix a fault just to find a simple component was the cause he would take it out to the workshop an pulverize it with a hammer. The practice now known as Widlarizing usually uses a sledgehammer and requires the component to be smashed so small you don’t even need to sweep it up off the floor. This was so the component couldn’t cause anyone else more problems.

Bob Widlar with the famous sheep, trying to get it to mow the lawn for him. The Mercedes is in the background, badly parked.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or general history. If you are interested, follow me on Twitter to get updates on projects I am currently working on. Most of all, thank you for taking the time to read my posts.

Follow @TheIndieG
Tweet to @TheIndieG

How Satellite Data Can Aid Archeology

For hundreds of years, maybe even thousands, humans have been digging holes, trying to unearth treasures of a bygone age. It is a messy affair, lots of shoveling and moving large amounts of dirt or sand. When it gets down to it small trowels may need to be used or even little brushes. How do we know where to dig? Well sometimes there are already existing structures, or the remnants of buildings. There could also be a building that has been there a long time. We just have to find hints that something interesting is under the ground. Archaeology can find things like pottery, tools and coins, but also parts of old structures. The problem is that more often than not these things are buried, else we would already know about them. In recent years archaeologists have used remote sensing methods to have a basic look underneath the ground before they dig it up. Basically the devices send a signal into the ground and see what gets reflected back. This can be very time consuming, moving equipment to a random field and spend all day setting up and getting reasonable measurements. Now with the increase of satellite technology there is a new way to look for new sites.

Inverted kite aerial photo of an excavation of a Roman site at Nesley near Tetbury in Gloucestershire. Taken on a kite line. Credit: Dr John Wells

The method of using satellite imagery, such as that found on Google Maps, is generally referred to as an aerial survey. Traditionally this was done using cameras attached to an airplane, balloon or UAV’s. People have also been known to use kites! These pictures can be useful to help map a large area, or a site that is particularly complex. Plus if they are taken fairly often then they can be used to document to progress and status of the dig. This angle of image can also help to detect things not obvious from the ground. Things like different coloured soil/sand, or locations of certain types/colours of flowers can hint at a buried structure or wall. When solid rocks develop under plants they tend to grow slower, so a wall may actually be fairly obvious if looked at over time. Certain plants such as ripening grain changes colour rapidly, and if anything slows it down then it is noticeable compared to the other grain. When looking at different times of day the shadows could show areas of a field that are slightly raised from its surrounding.

In this satellite image, the white arrows show a potential previously unknown buried pyramid and the black arrows other structures which have yet to be investigated. Credit: National Research Council, Italy.

With more and more Earth monitoring satellites going up all the time, companies like Planet Labs can now offer a satellite image of a specified part of land with updated images in the days and sometimes hours timescale. There have also been changes in the type of satellite going up, they are no longer just taking standard images. Modern technology allows the use of sensors seeing different wavelengths of light. The different bands of the electromagnetic spectrum can tell us different things about the thing you are looking at, and most of the spectrum, the human eye cannot see. Most of these satellites are designed to be used to look at weather conditions, specifically things like clouds and effect on the ground. Many modern weather satellites use microwave sensors to probe the ground. Much like microwave radar used to track airplanes, the satellites can send a signal towards the ground, and the signal that gets reflected back can say plenty about the surface. This is similar to the way ground penetrating radar works. SAR (Synthetic Aperture Radar) satellites are an example of this technology. There is also a good portion of satellites with Infrared spectrum sensors. This band is often giving data on aspects like temperature, showing how different sections of land are reacting to weather conditions can say plenty about what the ground is made of. There are also other methods to map the surface, such as LIDAR which is used in range finding applications, showing distances from the satellite to the ground.

Airborne laser-scanning technology, called LiDAR, provides a 3-D map of part of the Maya city at Caracol in Belize. LiDAR cuts through the jungle to reveal the hidden features beneath, a revolution in the study of ancient Maya landscapes. Credit: Courtesy Arlen Chase

Even though this is a fairly new technology for archaeology, there have been some significant uses of it. One of the most prominent uses have been to study the Maya civilization in ancient Mesoamerica. A particular area of interest is the Petén region of northern Guatemala. Very dense forest, and little to no modern settlements in the area make it difficult to study. Remote sensing has allowed scientists to study potential causeways and canals used by this early civilization. There have also been hints at cisterns and temples and buildings that they may have lived in. This allows for archaeologists to have a much better idea of where to look, without ever having to visit the jungle. In Peru, a group of Italian scientists have been getting results using satellite imagery. They have managed to get images of a buried settlement, including a pyramid in a riverbed. The North of Peru has also been known to be a haven for clandestine excavations. Satellite data has been useful to map and monitor archaeological looting. There have also been attempts to find lost cities such as Iram of the Lost Pillars in the Arabian Peninsula. The researchers found interesting information on old trade routes and uncovered a previously unknown settlement. There is also an award winning TED talk by Dr Sarah Parcak on using citizen science to search for sub-surface remains, Using normal people looking at satellite images they have prospectively found several significant sites in various parts of Egypt and the ancient Roman Empire.

A LiDAR image of the Caana complex at the heart of Caracol, at left, shows the tree canopy surrounding a 140-foot-tall building (in an aerial photo at right). The lasers also penetrate the jungle to reveal structures hidden by that overgrowth. Credit: Courtesy Arlen Chase.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or general history. If you are interested, follow me on Twitter to get updates on projects I am currently working on. Most of all, thank you for taking the time to read my posts.

Follow @TheIndieG
Tweet to @TheIndieG

A Great Start to the Space Year

2018 was a great year for space, but it was barely a few days into 2019 and three amazing achievements in space have happened. We had new Horizons studying the furthest object studied in space, the Chinese space agency landing a rover on the far side of the Moon, and OSIRIS-REx mission reached bennu.

New Horizons

By far the biggest news in the space sector recently, New Horizons officially flew by object 2014 MU69, the outermost close encounter of any Solar System object. Launching in 2016, New Horizons was a mission designed to help us understand the worlds at the edge of our Solar System. The biggest part of the mission was in 2015 when it made the first reconnaissance of the dwarf planet Pluto, producing some amazing photos. After that it kept venturing out into the Kuiper Belt to study more mysterious objects. The spacecraft is helping us to understand the basic questions about the surface properties, interior makeup, geology and atmosphere of the bodies it passes. The exploration of the Kuiper belt is one of the big priorities in planetary science currently. New Horizons fits into this plan, by seeing how Pluto and its Moons “fit in” to the other objects in the Solar System. It has already aided in finding four previously unknown Moons of Pluto, and studied the known Moon Charon in much more detail.

New Horizons Artist
An artistic impression of what New Horizons looked like when it passed Pluto and Charon. Credit: NASA Goddard Media Studios.

New Horizons was designed, built and is operated by The John Hopkins University Applied Physics Laboratory in Laurel, Maryland. Alan Stern of the Southwest Research Institute (SwRI) in Boulder, Colorado is the principal investigator. It flew by the Kuiper belt object 2014 MU69 barely a few hours into the new year at 05:33 UTC on January 1st 2019. The flyby technically ends on January 9th, where it switches from 3-axis mode to spin mode. This is the beginning of the downlink phase which could run for around 18 months! This is because it is so far away, the frequency (and therefore the data rate) is much lower than if the spacecraft was close. The current extended mission is planned to last until April 30th, 2021. If still operational there may be a new extended mission, but it has very limited fuel at about 11kg. The craft could in theory visit another Kuiper Belt object. If it lasts until the mid 2030’s it will join Voyager 2 in the Heliosphere, but based on the RTG it may run out about then.

Ultima Thule
Image of 2014 MU69, taken 30 minutes before closest approach from a distance of 28,000 km (17,000 mi). Credit: NASA/John Hopkins Applied Physics Laboratory.

Chang-E4

On January 3rd 2019 at 02:26 UTC China’s Chang’e-4 spacecraft successfully landed on the far side of the Moon. The first ever soft landing on the far side of the Moon, up until this point we only has remotely sensed images. The target of the spacecraft was the Von Kármán crater, located within the South Pole-Aitken basin. This is where an ancient lunar impact may have exposed some of the Moon’s mantle. The plan is to study this region directly with the rover and the lander. It also allows for a close up look at the far side of the Moon, which could be a perfect place for science applications such as radio astronomy. As there is no direct line of sight to the far side of the Moon they need a relay satellite. The satellite that China launched is the Queqiao relay satellite, launched in May 2018.

An image of the rover similar to the Chang’e-3’s rover. Credit: CNSA.

OSIRIS-Rex

Coming into the new year, on December 31st OSIRIS-REx entered orbit around Bennu. The orbit is at around 1.75 km (just over a mile), and is the place it will be doing an extensive remote sensing campaign. 101955 Bennu, or 1999 RQ36, is a carbonaceous asteroid in the Apollo group. Discovered in 1999, it has a 1 in 2700 chance of impacting Earth between 2175 and 2199. The name Bennu references the Egyptian mythological bird associated with the sun, creation and rebirth. The OSIRIS-REx mission is a sample return mission to the asteroid Bennu. Its goal is to obtain a sample of at least 60g and then bring that sample back to Earth for scientific study. The aim is to help scientists to learn about the formation and evolution of Solar System in its initial stages of planet formation and the source of organic compounds that eventually lead to life. If the mission is successful on September 24th 2023 it will be the first US spacecraft to return samples from an asteroid.

Asteroid Bennu, imaged by the OSIRIS-REx probe (3 December 2018). Credit: NASA/ Goddard/ University of Arizona.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on. Most of all, thank you for taking the time to read my posts this year! So all have a Happy New Year, and here’s to a great 2019 in space!

Follow @TheIndieG
Tweet to @TheIndieG