A Great Start to the Space Year

2018 was a great year for space, but it was barely a few days into 2019 and three amazing achievements in space have happened. We had new Horizons studying the furthest object studied in space, the Chinese space agency landing a rover on the far side of the Moon, and OSIRIS-REx mission reached bennu.

New Horizons

By far the biggest news in the space sector recently, New Horizons officially flew by object 2014 MU69, the outermost close encounter of any Solar System object. Launching in 2016, New Horizons was a mission designed to help us understand the worlds at the edge of our Solar System. The biggest part of the mission was in 2015 when it made the first reconnaissance of the dwarf planet Pluto, producing some amazing photos. After that it kept venturing out into the Kuiper Belt to study more mysterious objects. The spacecraft is helping us to understand the basic questions about the surface properties, interior makeup, geology and atmosphere of the bodies it passes. The exploration of the Kuiper belt is one of the big priorities in planetary science currently. New Horizons fits into this plan, by seeing how Pluto and its Moons “fit in” to the other objects in the Solar System. It has already aided in finding four previously unknown Moons of Pluto, and studied the known Moon Charon in much more detail.

New Horizons Artist
An artistic impression of what New Horizons looked like when it passed Pluto and Charon. Credit: NASA Goddard Media Studios.

New Horizons was designed, built and is operated by The John Hopkins University Applied Physics Laboratory in Laurel, Maryland. Alan Stern of the Southwest Research Institute (SwRI) in Boulder, Colorado is the principal investigator. It flew by the Kuiper belt object 2014 MU69 barely a few hours into the new year at 05:33 UTC on January 1st 2019. The flyby technically ends on January 9th, where it switches from 3-axis mode to spin mode. This is the beginning of the downlink phase which could run for around 18 months! This is because it is so far away, the frequency (and therefore the data rate) is much lower than if the spacecraft was close. The current extended mission is planned to last until April 30th, 2021. If still operational there may be a new extended mission, but it has very limited fuel at about 11kg. The craft could in theory visit another Kuiper Belt object. If it lasts until the mid 2030’s it will join Voyager 2 in the Heliosphere, but based on the RTG it may run out about then.

Ultima Thule
Image of 2014 MU69, taken 30 minutes before closest approach from a distance of 28,000 km (17,000 mi). Credit: NASA/John Hopkins Applied Physics Laboratory.

Chang-E4

On January 3rd 2019 at 02:26 UTC China’s Chang’e-4 spacecraft successfully landed on the far side of the Moon. The first ever soft landing on the far side of the Moon, up until this point we only has remotely sensed images. The target of the spacecraft was the Von Kármán crater, located within the South Pole-Aitken basin. This is where an ancient lunar impact may have exposed some of the Moon’s mantle. The plan is to study this region directly with the rover and the lander. It also allows for a close up look at the far side of the Moon, which could be a perfect place for science applications such as radio astronomy. As there is no direct line of sight to the far side of the Moon they need a relay satellite. The satellite that China launched is the Queqiao relay satellite, launched in May 2018.

An image of the rover similar to the Chang’e-3’s rover. Credit: CNSA.

OSIRIS-Rex

Coming into the new year, on December 31st OSIRIS-REx entered orbit around Bennu. The orbit is at around 1.75 km (just over a mile), and is the place it will be doing an extensive remote sensing campaign. 101955 Bennu, or 1999 RQ36, is a carbonaceous asteroid in the Apollo group. Discovered in 1999, it has a 1 in 2700 chance of impacting Earth between 2175 and 2199. The name Bennu references the Egyptian mythological bird associated with the sun, creation and rebirth. The OSIRIS-REx mission is a sample return mission to the asteroid Bennu. Its goal is to obtain a sample of at least 60g and then bring that sample back to Earth for scientific study. The aim is to help scientists to learn about the formation and evolution of Solar System in its initial stages of planet formation and the source of organic compounds that eventually lead to life. If the mission is successful on September 24th 2023 it will be the first US spacecraft to return samples from an asteroid.

Asteroid Bennu, imaged by the OSIRIS-REx probe (3 December 2018). Credit: NASA/ Goddard/ University of Arizona.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on. Most of all, thank you for taking the time to read my posts this year! So all have a Happy New Year, and here’s to a great 2019 in space!

Follow @TheIndieG
Tweet to @TheIndieG

The Space Missions of 2018

2018 has definitely been a big year for space, and space exploration. I have managed to capture a few of the great moments like the launch of InSight, JAXA landing rovers on an asteroid, and the launch of the Parker Probe. There have been a few others that are notable mentions, and that is the point of this post, to talk about some great launched missions, and others that have finished their jobs, purposely or forced.

Bepicolombo

The British built Bepicolombo launched in October 20th, to begin its 7 year journey to visit Mercury. Currently one of the least explored planets in the solar system, Bepicolombo intends to change that. When it arrives in late 2025 it will endure temperatures of over 350 °C, and be there for at least a year, possibly for twice that. It is made up of two spacecraft, the Mercury Planet Orbiter (MPO) lead by ESA, and the Mercury Magnetospheric Orbiter (MMO) lead by JAXA. The aim is to measure the composition, atmosphere and magnetosphere of Mercury to understand its history. This could lead to understanding more about how other planets such as Earth formed. BepiColombo is named after Professor Giuseppe (Bepi) Colombo (1920-1984) from the University of Padua, Italy. He made big leaps in understanding Mercury, and suggested to NASA how to use a gravity-assist swing-by of Venus to place Mariner 10 into a solar orbit of Mercury.

Bepicolombo artists impression
Artist’s impression of the BepiColombo spacecraft in cruise configuration. The Mercury Transfer Module is at the bottom. The Mercury Planetary Orbiter is in the middle. The Mercury Magnetospheric Orbiter sits inside the sunshield, visible at the top. Credit: ESA/ATG medialab

InSight

Back in May I posted about how an Atlas V had just lifted the Mars Insight lander. In late November the $814 million lander it reached its target of the Elysium Planitia region of Mars, landing safely. The aim is for it investigate how the processes that shaped all the inner rocky planets more than 4 billion years ago worked. It uses two seismometers (one of which built by RAL space in the UK) and a number of other instruments to study the crust, mantle and core of the red planet. It works by measuring how much the area shakes when asteroids hit the planet. Also measuring the heat flow and precision tracking it is getting a glimpse of Mars we have yet to see. The launch also allowed for two cubesats, MarCO-A and MarCO-B to be the first to be launched into deep space. The first test of miniaturised cubesat technology being used on another planet. This mission will be one to watch for the near future.

There’s a quiet beauty here. Looking forward to exploring my new home. #MarsLanding pic.twitter.com/mfClzsfJJr— NASA InSight (@NASAInSight) November 27, 2018

Kepler

A bit sadder news is the end of the Kepler space telescope after 9 years service. It has collected a huge amount of data in its lifetime, finding the night sky is filled with billions of hidden planets, more planets than stars. This may seem obvious but is not easy to prove. During its time the planet hunter has found evidence of more than 2,600 planets outside our solar system, and left hints at many more, paving the way for future planet hunters and getting good engineering data on what works and what doesn’t. Telescopes such as ARIEL which will launch in the net decade will have better design due to Kepler. The space telescope had been running low on fuel for months, and struggled to point the correct way. After the 4 year mission it continued to work a different mission named K2. In October it was officially declared dead, left in orbit as it may have been dangerous for it to enter the atmosphere.

The Kepler Space Telescope mission, by the numbers
The Kepler Space Telescope mission, by the numbers. Credit: NASA/Ames/Wendy Stenzel

Parker Solar Probe

Back in august I wrote about the classic Delta IV heavy launching with the Parker Solar Probe aboard. The aim is to get closer to the sun than previously possible. Over the next seven years the probe will make 24 close approaches to the sun, with the aim of eventually getting within 3.8 million miles of the surface. The previous record (that Parker has now broken) was 26.6 million miles, set in 1976. It will revolutionise our understanding of the sun, and how the changing conditions can affect the solar system. It will use Venus’ gravity to slowly get closer to the sun. As a reference, we are 93 million miles away from the sun. It will eventually fly through the sun’s outer atmosphere, known as the Corona for the first time, getting brand new, in situ measurements. The spacecraft has a 4.5 inch thick carbon composite shield to protect it from the heat and radiation. The temperatures will reach over 1300 C.

Parker Solar Probe in the Fairing
Parker Solar Probe in the Fairing, ready to be put on the rocket in the clean room. Credit: NASA/Johns Hopkins APL/Ed Whitman

TESS

Back in April I posted about the launch of the TESS exoplanet hunter by a Falcon 9. I have already talked about exoplanets and planet hunters, and this is a big part of that plan. TESS stands for Transiting Exoplanet Surveying Satellite, and it does what it says on the tin, it is surveying the sky for potential exoplanets. Basically it is looking for exoplanets that could harbour life. The expectation is that it will catalog thousands of planet candidates and vastly increase the known number of exoplanets. Approximately 300 are expected to be Earth-sized and super-Earth-sized exoplanets that can then use the future more complex telescopes such as JWST to look at in more detail. The satellite will look at the sky for two years by breaking it up into 26 sections, and looking at each one for 27 days at a time. Unlike Kepler and K2 TESS will be looking at brighter stars, meaning ground based observatories can corroborate the observations.

the TESS telescope
The TESS satellite before launch, the four cameras can be seen on the top of the spacecraft; Credit: NASA.

Dawn

In September I posted about the Dawn spacecraft and the rise of Ion Engines. With the loss of the Dawn mission around the same time as Kepler, they ran out of fuel within two days of each other. The 11 year Dawn mission racked up a few very important records. It is the first spacecraft to orbit two different celestial bodies, and the first to orbit any object in the main asteroid belt between Mars and Jupiter. It is also a record breaker for electric speed. Travelling over 25,700 mph. Visiting Ceres and Vesta, it found out some very important scientific data that tells us a huge amount about the formation of our solar system. With a large proportion of the meteorites hitting Earth coming from these two bodies, Dawn showed the difference between the potential dwarf planets. One of the early uses of ion engines, it also showed the potential of the efficient form of travel, and now many more satellites are using them.

Dawn prior to encapsulation at its launch pad on July 1, 2007. Credit: NASA/Amanda Diller

Mars Rovers

This is a mixed bag, we have already had great news about the InSight lander, with it recording sounds of Martian winds, the rovers also have big news this year. In June the Curiosity rover found Organic matter in the Martian soil. The samples, taken from 3 billion year old mudstone contained complex hydrocarbons. This along with its detection of methane changes in the atmosphere are one step along the way to finding evidence of life on other planets. There have also been many more photos from the red planet, with Curiosity taking a few more selfies. See here how the car sized rover achieves the great pictures. On the other side of it there was a huge Martian storm that may have killed the Opportunity rover by covering the solar panels in dust. Although there are still hopes the rover can start communications again, we will have to see.

Curiosity in a dust storm
An image shared by Seán Doran on Sunday of the Mars Curiosity in the middle of a dust storm reported to cover an area the size of the US and Russia Combined. CredIt: NASA/JPL/Seán Doran.

Asteroid Rovers

In late september, another great story came out, that JAXA (the Japanese space agency) successfully landed a number of rovers on an asteroid. Still to launch all of the four onto the surface, there are already great images from the surface of an asteroid. The little rovers use a hopping mechanism to get around, as the gravity on the asteroid is so small a wheeled rover just wouldn’t work. The spacecraft will also be attempting to collect samples to return to Earth in the coming years. The Hayabusa 2 probe is a follow up to the Hayabusa probe which was not a sample return. The second launched on December 3rd 2014 and rendezvoused with the near-earth asteroid 162173 Ryugu on the 27th of June 2018. Currently in the process of surveying the asteroid for a year and a half, it will depart in December 2019, returning to Earth in December 2020.

 MINERVA-II image
First pictures from a MINERVA-II-1 rover that landed on the asteroid. Credit: JAXA.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on. Most of all, thank you for taking the time to read my posts this year! So all have a Happy New Year, and here’s to a great 2019 in space!

Follow @TheIndieG
Tweet to @TheIndieG

Roundup: Parker Solar Probe Launch

Rocket flames
An awesome image of the Delta IV heavy launching from pad 37B. Credit: Aerojet Rocketdyne.

At 07:31 UTC on August the 12th 2018 the 10th ever Delta IV heavy vehicle launched the long awaited Parker Solar Probe from Cape Canaveral Space Launch Complex 37B. The Delta 4 Heavy launched PSP towards a heliocentric orbit. The mission aims to “touch the sun”, and to get as close to the sun as man has ever been. Getting as close as 3.9 million miles from the sun, that’s roughly 4% of the distance between the Earth and the Sun (roughly 93 million miles).

time lapse
A great timelapse of the Delta 4 heavy launching towards the sun. Credit: Marcus Cote.

The Parker Solar Probe was named after Dr Eugene Parker who discovered the solar winds in 1958. He was present at the launch at the Kennedy Space Centre, seeing the 685kg spacecraft lifted. The 7 year mission will make 24 elliptical orbits of the sun, and uses 7 flybys of Venus to drop the low point of the orbit. It will make the closest point of the orbit closer than any other man made object in heliocentric orbit. It will enter the sun’s “atmosphere”, a section known as the corona, the outermost part of the atmosphere. Protected by a 4.5 inch sunshield, it can withstand temperatures of 2500F (1377C). The aim is to understand how the sun can creates and evolves solar flares and solar winds. It is to understand how the highest energy particles that pass the Earth are formed. It is hoped that it will revolutionise our understanding of the sun, to help us develop and create technology here on Earth.

The rocket has three RS-68A boosters, with the outbound boosters cutting off at T+3 min 57 sec, the core then cut off a minute and a half later at T+5 min 36 sec. The Delta’s cryogenic first stage engine was RL10B-2, which began burning at T+5 min 55 sec, and stopped its first burn at T+10 min 37 sec. This burn entered the 3,044 kg load into a 168 km x 183 km x 28.38 deg parking orbit. The second burn started at T+22 min 25 sec, and ended at T+36 min 39 sec, accelerating it to C3 of 59 km2/sec2, roughly 5,300 m/s out of LEO. At this point the Probe was in solar orbit, the Star 4BV separated at T+37 min 9 sec, with it firing at T+37 min 29 sec. The burn ended a minute and a half later at T+38 min 58 sec, accelerating it to 8,750 m/s beyond LEO. The Parker Solar Probe separated four and a half minutes later. The orbits after this point become much more complicated to get to the prefered orbit touching the sun.

Engineers at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, work on NASA’s Parker Solar Probe spacecraft. Parker Solar Probe will be the first-ever mission to fly directly through the Sun’s atmosphere. Photo & Caption Credit: NASA / JHU-APL

The Delta 380 was the first Cape Canaveral Delta to use the upgraded “common avionics” system for its flight controller. The rocket was shipped to the Cape over a year ago, with it being assembled in the SLC 37 HIF. The rocket was then rolled out to the pad in April 2018, and there was a wet dress rehearsal on June 2 and 6th. The initial date for launch was the day before, august 11th but it was scrubbed at T-1 min 55 sec. Some of the best images of these launches are now taken by amateurs. I usually post a few of the images, but this launch was different as most of those who placed their cameras just a few hundred feet from the rocket got very damaged equipment.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

Record Breaking Falcon 9 Launch

Telstar 19V
The awesome flames of the Falcon 9 Block 5 carrying Telstar 19V. Credit: Marcus Cote.

On the 22nd of July 2018, at 05:50 UTC a record breaking Block 5 Falcon 9 launched Telstar 19V into subsynchronous transfer orbit. Launching from Cape Canaveral Space Launch Complex 40, F9-59 (launch designation) was the First Block 5 to launch from this pad. The 7,075 kg payload was more than the previous record holder, the 6,910 kg TerreStar 1 orbited by the Ariane 5 in July 2009. Although, the previous record holder launched the satellite to full geosynchronous transfer orbit. This launch was seen as a key test of the newly developed Block 5 launch system. The first stage was recovered on the autonomous drone ship “Of Course I Still Love You” off the Florida coast.

Telstar 19V medium
A great view of SLC-40 from across the water while Telstar 19V is being launched. Credit: SpaceX Flickr.

An SSL 1300 series satellite, Telstar 19V is part of the Telstar series. Owned by the Canadian Satellite Company Telsat, it was built by Space Systems Loral (MAXAR). Using Ka and Ku band transponders it is branded as a high throughput communications satellite, designed for high bandwidth applications that the communications industry is currently dealing with. It is collocated with Telesats Telstar 14R satellite at the same position. The companies first high throughput satellite was Telstar 12V, which sits 15 degrees west.

The upgraded engines of the Merlin 1D engines on the Falcon 9 block 5 can produce a total of 775.65 tonnes of thrust at sea level. The second stage produces roughly 100 tonnes of thrust when in space. The first stage with the designation B1047 burned for 2 minutes and 30 seconds before separating to perform reentry and landing burns. The second stage burned for 5 minutes and 38 seconds to reach a parking orbit, stopping T+8 minutes 12 seconds. The stage restated at T+26 minutes 49 seconds for a 50 second burn to put the satellite into a 243 x 17,863 km x 27 degree orbit. The satellite will then raise itself into a geostationary orbit at 63 degrees west to cover the Americas.

Telstar 19V long exposure
A great long exposure of F9-59 launching Telstar 19V from Florida’s Cape Canaveral. Credit: SpaceX.

A total of 26 Falcon 9/Falcon Heavy core and booster stages have now been recovered in 32 attempts. Four of those successful landings have been on “Just Read The Instructions” off the California coast, 10 have been at Cape Canaveral Landing zone 1&2, and 11 on “Of Course I Still Love You off the Florida coast. Twenty unique first stages have been recovered, with fourteen of them flying twice, and eight being expended during their second flight. All of the successfully recovered first stages have been version 1.2.

Telstar 19V medium 2
A Falcon 9 launches from Space Launch Complex 40 with a record breaking satellite aboard. Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

The Final Block 4 Changes the Florida Sky

Smoke left over by CRS-15
The smoke stream left over by CRS-15 after the launch from Cape Canaveral, FL. Credit: Marcus Cote.

On the 29th of June 2018, at 09:42 UTC the last Block 4 type Falcon 9 rocket launched a cargo mission to the International space station. Launching from Space Launch Complex 40 at Cape Canaveral Air Force Base, the Falcon 9 was carrying CRS-15, a resupply for the International Space Station (ISS). This is the 15th mission of up to 20 CRS missions that have been contracted with NASA to resupply the ISS. Initially planned for April 2018, it was eventually pushed to the 29th of June. Previous resupply missions have been conducted by SpaceX and Orbital ATK.

Long Exposure CRS-15
A great long exposure image of the CRS-15 launch. Plenty of other versions of these out there, but this one has the great smoke shapes at the end. Credit: Marcus Cote.

B1045 (the first stage booster) was the seventh and final “Block 4” Falcon 9 v1.2 first stage manufactured by SpaceX. For this reason it is very likely that this was the final Block 4 first stage orbital vehicle. SpaceX has since developed the Block 5 the debuted in May. Together the seven Block 4 Falcon 9’s boosted twelve missions, with most being expended on the second flight. This stage was purposely expended at the end of the mission, the ninth purposeful expenditure in the last twelve launches. This stage was not equipped with landing legs or titanium steering grid fins. It was the 14th flight of a previously flown Falcon 9 first stage, and the eighth to be expended on the second flight.

CRS-15 by Spacex
The night launch of the CRS-15 mission to resupply the ISS with a Dragon capsule. Credit: SpaceX

B1045.2 had previously boosted NASA’s TESS towards orbit on April 18th 2018, I wrote about that launch here. With it returning to the autonomous drone ship “Of Course I Still Love You” downrange. For this mission it launched the two stage rocket and powered it for 2 minutes and 51 seconds. With a Dragon 11.2 refurbished spacecraft that was previously used on CRS-9 in July 2016 the main payload for the rocket. The first put the capsule and the second stage into a 227 x 387 km x 51.64 degree orbit. The block 5 second stage burned for about 8 minutes and 31 seconds after liftoff, inserting Dragon into the required orbit. The burn was 36 seconds shorter than previous Block 4 launches as this rocket had higher thrust. Dragon rendezvoused with the ISS on the 2nd of July after an extended coast.

CRS-15 smoke
The great view of the remanence of the CRS-15 launch, taken from the Vehicle Assembly Building at Cape Canaveral. Credit: Marcus Cote.

This launch left a particularly cool looking smoke cloud afterwards. With many Twitter users posting images of the smoke remnants hundreds of miles away. The night launch also allowed for some great photos by many of the keen photographers that are at every launch, capturing many of the images in this post. To see more of the awesome rocket launches, I have posted about many, and will continue to do so.

CRS-15 launch
The launch of the CRS-15 mission. You can see the flames from the 9 Merlin-1D engines. Credit: SpaceX

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

Orbital ATK resupply the ISS

Orbital ATK launch of a Antares 230 Rocket
Orbital ATK launch a cargo resupply mission to the ISS on an Antares Rocket from Wallops. Credit: Orbital ATK Flickr.

On May 21st 2018, Orbital ATK’s Antares launch vehicle orbited the companies Cygnus OA-9 cargo hauling spacecraft. Launched from the little known NASA Wallops Island in Virginia, it took off from pad 0A at 08:44 UTC. OA-9 took 3,250 kg of cargo to the international space station, along with several cubesats that with deployer hardware added roughly 120 kg. This launch was in honour of J.R.Thompson, former Orbital Science CEO, who passed away in 2017.

Antares 230 waitjng
Antares 230 rocket waiting to launch from NASA Wallops Island. Credit: Space Launch Schedule

It was the third flight of the Antares 230 variant, a redesigned vehicle powered by two Energomash RD-181 engines instead of the AJ-26 engines that powered the first five Antares flights. The change was made after one of the AJ-26 turbopumps failed and triggered a destructive explosion above the pad in 2004. Cygnus OA-9 was the sixth enhanced Cygnus with a stretched cargo module, but only the third to fly on Antares, Atlas 5 launched the other three.#

ISS Cargo waiting
The OA-9 Cygnus cargo waiting to me mated with the rest of the rocket at Orbital ATK. Credit: Orbital ATK Flickr.

According to Orbital ATK, Cygnus  OA-9 weighed 6,173 kg at launch, matching OA-8 payload for heaviest launched by an Antares rocket. The RD-181 engines produce a total of 392 tonnes of thrust at liftoff, that powers the 293 tonne rocket into the sky. Built in Ukraine (former Soviet design), the first stage burned for 211 seconds. After first stage shutdown it seperated and coasted “up hill” for 37 seconds before the Orbital ATK Castor 30XL second stage motor ignited to produce 51 tonnes of thrust for 160 seconds. The payload fairing separated 12 seconds before second stage ignition. Cygnus separated into a 198 x 317 km x 51.63 deg orbit about 9 min 6 sec after liftoff.

OA-9 loading cargo
Orbital ATK loading cargo into the Cygnus OA-9 second stage. Credit: Orbital ATK Flickr.

The First Block 5 Launches Bangladesh’s First Satellite

F9-55 launches
An awesome image of the first Block 5 Falcon 9 taking off from LC 39A at KSC. Credit: SpaceX Flickr.

On the 11th of May 2018, at 20:14 UTC the first ever block 5 Falcon 9 rocket launched Bangabandhu 1 into geosynchronous transfer orbit. Launched from Launch Complex 39A at Cape Canaveral Air Force Base, the F9-55 (launch designation) was delayed after an automatic abort on May 10th, 1 minute before liftoff. Bangabandhu 1, a Thales Alenia Space Spacebus 4000B2 series satellite is Bangladesh’s first geostationary communications satellite.

The block 5 has been long awaited by SpaceX fans, with many images in the news, and plenty of hints on Twitter. SpaceX has been incrementally improving and upgrading the Falcon 9 v1.2 booster design since it’s first launch in December 2015. Designed to be much easier to refurbish, with potentially 10 reuses in each booster. Previous block designs have only been able to be reused once before being decommissioned.

F9-55 on the pad
The F9-55 on the launchpad ready to fire a satellite into GTO more efficiently that previous versions. Credit: @marcuscotephoto on twitter.

The Block 5 incorporates higher thrust Merlin 1D engines that have turboprop modifications that were requested by NASA. These modifications are to accommodate future potential crew launches. Another big change was mentioned in the livestream, where the pressurisation method in the second stage has been improved. After the AMOS 6 Falcon 9 explosion, the new version allows for faster, later and denser, chilled kerosene fuel loading. It also has new landing legs that can be retracted without being removed like previous Falcon 9’s. There are other changes, but they have been featured in previous designs.

F9-55 launch
The Falcon 9 takes off with Bangladesh’s first geostationary communications satellite on board. Credit: @marcuscotephoto on Twitter

The first stage had designation B1046. It burned for 2 minutes and 31 seconds, before separating ro perform reentry burns. It opened its new landing legs and landed on the autonomous drone ship Of Course I Still Love You, 630km downrange in the ocean. The second stage burned for 5 minutes and 43 seconds to reach parking orbit at T+8 minutes and 19 seconds. It then restarted ar T+27 minutes and 38 seconds for a 59 second long second burn that accelerated the craft to GTO.

F9-55 awesome shot
The Falcon 9 after an aborted launch the day before, with a new paint scheme to denote the block 5. Credit: SpaceX Flickr.

In the 31 attempts, 25 Falcon 9/Falcon Heavy booster have been successfully recovered. Four of the landings have been on “Just Read The Instructions” off the coast of California. 10 on land at Cape Canaveral from LZ1 with another one on  LZ2. 10 have landed on the autonomous drone ship, Of Course I Still Love You off the Florida coast. Nineteen individual first stages have been recovered, eleven have flown twice, with five of those ether expended or lost during their second flights. All the recovered stages have been v1.2 Falcon 9’s.

F9-55 power
The first look at the extra thrust on the Falcon 9 Merlin 1D engines in the new Block 5. Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

Atlas V Launches InSight

Atlas V on the pad
The Atlas V on the launch pad at vandenberg AFB in California, Credit: ULA flickr.

At 11:05 UTC on May 5th 2018 the forth Atlas launch of the year launched the long awaited InSight mission on a course for mars. Launching from Vandenberg Air Force Base the AV-078 (the launch designation) was an Atlas V in 401 configuration. It was the first interplanetary launch from the west coast of the United States. Liftoff of the Atlas V with a 4m payload fairing was from Space Launch Complex 3 East.

Sam Suns first tweet
An awesome photo of the launch that blew up on twitter, taken from the sky. Credit @BirdsNSpace on Twitter.

The rocket had one main payload, the InSight Mission and two CubeSats. InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is a robotic lander designed to study the interior of the planet Mars.  I weighed 694 kg at launch, including a 425 kg fueled lander. The lander carries a probe that will be hammered 15m into the Mars surface, a seismometer, a magnetometer (first expected to land on the surface of Mars), a laser reflector, along with other instruments. The lander also has a robotic arm to move payloads around, but there will be another post in the future discussing the instruments in more detail. The two CubeSats on board are known as MarCO-A and MarCO-B, each weighing about 13.5 kg. They will fly by Mars while conducting a data relay experiment with InSight.

Insight Fairing
The 4m payload fairing on top of the Atlas V containing the InSight payload. Credit: ULA Flickr.

The design of InSight was developed from the 2008 Phoenix Mars Lander. The previous lander was launched on Delta 2 rockets compared to the Atlas V, both built and launched by the United Launch Alliance. The Atlas V does have excess capability for the mission (slightly overkill) but this allowed it to be launched from Vandenberg AFB. Previous solar orbit missions (like this one) were launched from the Cape to gain the site’s eastward earth rotational velocity. Vandenberg launches have to fly south or westerly direction across the Pacific Ocean. InSight was originally planned to launch in 2016 but was delayed to 2018 due to the main instrument failing.

Liftoff od Insight
The Atlas V lifts off, unfortunately the fog rolled in so very few great shots were taken by the remote cameras. Credit: ULA Flickr.

AV-078 started on a 158 degree azimuth, aiming towards a 63.4 degree Low Earth Parking Orbit. The LOX/RP-1 fueled RD-180 powered first stage fired for 4 minutes and 4 seconds. The Centaur’s RL10C-1 LOX/LH2 engine then fired for 8 minutes and 48 seconds to reach the parking orbit. It then coasted for 65 minutes and 40 seconds then performing a second, 5 minute and 23 second burn to accelerate into a trans-Mars solar orbit. Insight separated 9 minutes after at about T+1 hour, 33 minutes and 19 seconds. The CubeSats separated shortly after.

Aaron Colier Atlas V launch
An awesome long exposure shot of the launch taken by Aaron Collier. From roughly 85 miles away. Credit @aaroncollier96 on Twitter.

Final Rokot Launches Sentinel 3B

What Sentinel 3B looks like
Artist’s view of what Sentinel 3B looks like when up in space, sadly there are not many images of it for real! Credit: ESA/ATG Medialab

On April 25th, 2018, at 17:57 UTC a Russian Rokot/Briz KM rocket launched from Site 133, pad 3 from Plesetsk Cosmodrome. Aboard was Sentinel 3B, an Earth observing satellite, part of Europe’s Copernicus environmental monitoring network. This marks the final commercial Rokot Launch, and the final Eurokot mission. There are some more Rockot launches planned for the Russian government though, after which it is reportedly that the repurposed missile launch system will be retired.

Sentinel-3B UC exit from MIK go to Launch pad
The Sentinel 3B being transported to the launchpad by the russian train system.

Sentinel 3B is a Thales Alenia Space Prima Bus satellite, designed to measure ocean temperatures, colour, surface height and the thickness of sea ice. While it is over land it can measure the height of rivers and lakes, monitor wildfires, provide maps of land use and monitor vegetation. The satellite has been designed for many uses. Created for the European Space Agency, the satellite will join Sentinel 3A in orbit to symmetrically monitor the Earth. The data will be primarily fed into the Copernicus Environmental Monitoring Service, where the applications can be developed from to use the data.

Sentinel 3B in integration
An image of the Sentinel 3B satellite just before it was sent off to Russia to be put on the Rokot. Credit ESA

The satellite carries many payloads to track the huge amount of data it is recording, these include:

  • OLCI (Ocean and Land Colour Instrument)
  • SLSTR (Sea and Land Surface Temperature Radiometer)
  • SRAL (Synthetic Aperture Radar Altimeter)
  • MWR (Microwave Radiometer)
  • DORIS
  • LRR (Laser Retroreflector)
  • GNSS (Global Navigation Satellite System)

Thales Alenia Space was the prime contractor, responsible for constructing the spacecraft and the SRAL instrument, as well as contributing to the supply of the SLSTR instrument. Many European companies were involved in supplying the SLSTR instrument, including SELEX Galileo, RAL (Rutherford Appleton Laboratory), Jena-Optronik, Thales Alenia Space, ABSL and ESA-ESTEC. EADS CASA Espacio was contracted to provide the MWR instrument. CNES was contracted to provide the DORIS instrument.

Mediterranean Sea
An image of the Mediterranean Sea taken by Sentinel 3A, the partner of Sentinel 3B, they will don the same job on opposite sides of the Earth. Credit: ESA

The Exoplanet Hunter TESS Launched by Falcon 9

TESS taking off
The Falcon 9 taking off from SLC-40 at Cape Canaveral with TESS on board. Credit: SpaceX Flickr.

On April 18th, 2018 at 22:51 UTC a Falcon 9 took off from Launch Complex 40 at Cape Canaveral AFB. Aboard was NASA’s latest research satellite TESS. A mission that cost $337 million, Transiting Exoplanet Survey Satellite (TESS)  is the latest in a line of space based observatories that are set to launch this decade. Launched into an arching elliptical orbit that will take the spacecraft over two thirds of the distance to the moon. The first stage of the Falcon 9 landed on the autonomous drone ship Of Course I Still Love You to be refurbished and reused.

falcon 9 engines
The sheer power of the Falcon 9’s nine Merlin 1D engines produce an awesome inferno. You can clearly see the 45 written on the side as the booster designator. Credit @marcuscotephoto on Twitter.

After a 5 day checkout of the spacecraft, basically a hardware check, the ground controllers will switch on the TESS cameras. TESS is designed to scan around 85% of the sky during the two year mission, with astronomers estimating as many as 20,000 new planets could be found. It plans to build on discoveries made by NASA’s Kepler telescope which was launched in 2009 to find earth like planets. TESS carries four 16.8-megapixel cameras, and will look for dips in light coming from 200,000 preselected nearby stars. The four cameras cover a square in the sky that measures 24 x 24 degrees, wide enough to fit the Orion constellation into a single camera. the cameras together study a set area of sky for 27 days before staring at the next section.

TESS orbit
An illustration of the orbits that TESS will go through to get to the final orbit P/2. Credit: NASA.

The orbit TESS is being launched into is known as P/2, and requires time and finesse to reach. TESS will slingshot by the moon at a distance of around 5,000 miles (8,000 kilometers), using gravity to reshape its orbit, increasing the satellite’s orbital perigee, or low point, to the final planned altitude of around 67,000 miles. After the lunar flyby, the high point of the satellite’s elongated orbit will stretch well beyond the moon, and another thruster firing will nudge TESS into its final orbit in mid-June. Science data is planned to start in july, with the first year of the two year campaign aimed at the stars in the southern sky. TESS has been built to have enough fuel to last 20 or 30 years, assuming funding by NASA and the components on board continue to function correctly.

the TESS telescope
The TESS satellite before launch, the four cameras can be seen on the top of the spacecraft; Credit: NASA.

Each of TESS’s cameras have four custom built re-sensitive CCD sensors designed and developed by MIT’s Lincoln Laboratory. The sensors are claimed to be the most perfect CCD’s ever flown by a science mission. The lenses used by the cameras are only about 4 inches (10mm) wide, meaning it has a fairly low light collecting power compared to other space telescopes. The James Webb Space Telescope for example launching in 2020 had a 21.3ft (6.5m) primary mirror, although the satellite has cost over $8 billion to make. TESS is a bit like a finder telescope, it will lay a bedrock for future missions such as Webb and ground based observatories to make better readings. It gives a good idea of the best places to look, where the most likely exoplanets are.

launch of TESS
The Falcon 9 launching the Transiting Exoplanet Survey Satellite to an orbit of P/2. Credit: SpaceX Flickr.

TESS works by looking at a star, in this case mainly M-dwarf stars, which are cooler than our sun. They are also known as red dwarfs and make up most of the stars in our galaxy. When a planet goes in front of the star the light received by TESS “dips” and changes slightly in colour. This change in the light it receives can tell scientists alot about the size of a planet, and other things like density and velocity. They expect TESS to find between 500 and 1,000 planets that are between one and three times the size of Earth, and 20,000 planets the size of Neptune or Jupiter. The readings will give a good idea of where to focus on and ‘follow up’ on future missions. Then missions such as JWST can probe and use more complex tools to find information such as atmospheric composition, and whether they could be habitable.

long exposure TESS
A long exposure of the Falcon 9 taking off over the SpaceX hangar at Cape Canaveral. Credit: SpaceX Flickr.

The Falcon 9 used was a v1.2 with designation F9-54. It used a brand new “Block 4” first stage. The booster designated B1045 has a clear 45 written on the side in some of the close up booster images. The fist stage boosted for 2 minutes and 29 seconds, then detaching and slowing itself down. The booster landed downrange on the autonomous drone ship “Of Course I Still Love You”. The first successful drone ship landing since October 2017. A total of 24 Falcon 9 or Falcon Heavy booster stages have now been recovered in 30 attempts. Four of which were on “Just Read The Instructions” off the coast of California, ten at Cape Canaveral Landing Zone 1 and 2, and nine on the autonomous drone ship “Of Course I Still Love You” off the Florida Coast. 18 first stages have been recovered, 11 of which have flown twice, five have been lost during their second flight. B1045 was the last brand new “Block 4” Falcon 9 booster.

TESS taking off
An awesome photo of a Falcon 9 taking off from across the water, a perfect day for pictures! Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com