Locating Where a Sound is Coming From

For my masters year, half the marks came from one module, the masters project. Being a team effort, we were in a group of three. Putting our heads together, and taking ideas from lecturers, we made a list of potential projects. We knew for one that I wanted to be making hardware, and the other two wanted to use/learn machine learning and maybe FPGA’s. After much deliberation we decided to make a project that listened for a sound, and using time difference of arrival worked out where the sound came from. This post is mostly about the hardware and circuitry designed for the project.

The final board for our masters project. Contains four amplifier sections for the microphones and a micro controller with USB interface.

With a world with a big focus on safety in public places, we thought it would be a good product for the security industry, potentially with links to smart cities. Imagine a shopping center, somewhere with lots of security already. They tend to have lots of security cameras, alarm systems and a dedicated guard. This isn’t uncommon in big public places/attractions, especially in the UK. Sports stadiums, train stations and museums are always looking for new ways to protect themselves and isolate problems. The example that inspired us was the horrendous shooting in Las Vegas at a concert in October 2017, just as we were picking projects. The main problem was that the security services did not know where the shooter was, meaning it took longer to get to him. If they had a system like we envisaged, the microphones would pick up the sound and triangulate it. The location could then be sent to relevant authorities to use.

The front page of the New York times just days after the Las Vegas shooting

To start with we needed microphones. We didn’t need to reinvent the wheel, and microphones can be easily bought off the shelf. For ease we used standard stage microphones, that had 3-pin XLR outputs. Although we had been warned that they would not work they had a good omnidirectional pattern, and had lots of good documentation. One issue with them is the output is balanced, which means it needs to go through a pre-amp. To get an idea of what a balanced signal is, imagine a ground connection and two signals. The two signals are the same, but one is inverted. This means when it travels down the cable it is much less susceptible to interference. This is part of the reason we liked using stage rated equipment, as sound engineers have already worked out issues with transporting sound signals long distances through noisy situations. We concluded from research that the signals could reach over 100m, which was the number we were aiming for.

One of the pre-amplifier sections used on the board, using four operational amplifiers.

Once the signal got to the box it needed to be converted to a signal that could be read by an ADC. To do this we used an INA217, a pre-amp designed for basically this purpose. An instrument amplifier, it measures the difference between the signals and amplifies them, outputting a voltage with reference to ground. The signal from the microphone is tiny, in the tens of milivolts range, so it needed some dramatic amplification to get it near the 5V ADC. The INA217 did a good job but we put a second stage amplifier to give it the extra push, as very large gains can sometimes be bad for a number of reasons. We used an OP07D but if we were to do it again we would get a rail-to-rail to get better results. This amp had a pot as one of the gain resistors so that we could easily trim the gain depending on test. Finally, the signal at this point sat between -2.5V and +2.5V so we needed to shift it up so it was between 0 and 5V. This was done with a simple shift circuit and an amplifier. We used another OP07D to make buying easier.

Me manufacturing the PCB, at this point I was inspecting to see how well it had been soldered.

From here the signal gets read by the 12 bit ADC in an STM32 microcontroller. It then streams the data via the USB to a PC where MATLAB picks it up. This is where my knowledge is a bit lacking as I did not make it. In essence MATLAB uses a machine learning algorithm that had listened to over 1000 gunshots, screams and explosions. It has categorized them, and used a number of features to notice the difference. Then when playing a new sound of one of these things (not heard by it before) it categorizes it and outputs it to the user. It also used a selection of sounds from the background to know when there is not one of these events happening, else there will false negatives.

One of our set ups to get a useful output and test the amplifiers were working properly.

All in all the project did actually work. It detected gunshots and screams being played into the microphone, and the triangulation algorithm worked, just not in real time. We managed to win the best masters project, mainly because we had good quality hardware, a partially working system and a good business case behind it. There is a lot of scope of where this project could go, and many things that could be improved, but we were happy with how it came out. I may be able to use some of the circuitry on other projects, who knows. If you are interested in more of the project, maybe some more detail about the hardware or manufacture, comment or message on Twitter. Thanks for reading.

A good example of how much difference there is between the microphones when a big sound was made. Minute distances made a big time difference.

The Dawn of Ion Engines

Ion thrusters are becoming a bigger and bigger part of modern satellite design. Over 100 geosynchronous Earth Orbit communication satellites are being kept in the desired locations in orbit using this revolutionary technology. This post is about its most amazing achievement to date, the Dawn Spacecraft. Just reported that it is at the end of its second extension of the mission it has a few records under its belt. It is the first spacecraft to orbit two different celestial bodies, and the first to orbit any object in the main asteroid belt between Mars and Jupiter. It is also a record breaker for electric speed. Travelling over 25,700 mph it is 2.7x faster than the previous fastest electric thrusted spacecraft. That is a comparable speed to the Delta 2 launch vehicle that got it to space in the first place.

Delta 2 launch
The Dawn spacecraft launching on a Delta 2 rocket from Cape Canaveral Air Force Station SLC 17 on Sept 27th, 2007. Credit: NASA/Tony Gray & Robert Murra

The Dawn mission was designed to study two large bodies in the main asteroid belt. This is to get a deeper insight into the formation of the solar system . It also has the added benefit of testing the ion drive in deep space for much longer than previous spacecraft. Ceres and Vesta are the two most massive bodies in the belt, and are also very useful protoplanets from a scientific standpoint. Ceres is an icy and cold dwarf planet whereas Vesta is a rocky and dry asteroid. Understanding these bodies can bridge the understanding of how the rocky planets and icy bodies of the solar system form. It could also show how some of the rocky planets can hold water/ice. In 2006 the International Astronomical Union (IAU) changed the definition of what a planet is, and introduced the term “dwarf planet”. This is the change that downgraded Pluto from its planet status, although that has been argued to be wrong by Dr. Phil Metzger in a recent paper. Ceres is classified as a dwarf planet. As Dawn arrived at Ceres a few months before New Horizons reached Pluto, Dawn was the first to study a dwarf planet.

Dawn prior to encapsulation at its launch pad on July 1, 2007. Credit: NASA/Amanda Diller

The ion engine is so efficient that without them a trip to just Vesta would need 10 times more propellant, a much larger spacecraft, and therefore a much larger launch vehicle (making it much more expensive). The ion propulsion system that it uses was first proven by Deep Space Mission 1, along with 11 other technologies. Dawn has three 30 cm diameter (12 inch) ion thrust units. They can move in two axis to allow for migration of the center of mass as the mission progresses. The attitude control system can also use the movable ion thrusters to control the attitude. The mission only needs two of the thrusters to complete the mission, the third being a spare. All three have been used at some point during the mission, one at a time. As of September 7th 2018 the spacecraft has spent 5.9 years with the ion thrusters on, which is about 54% of its total time in space. The thrust to its first orbit took 979 days, with the entire mission being over 2000 days. Deep Space 1’s mission in contrast lasted 678 days before the fuel ran out.

An artist’s impression of Dawn with its ion thrusters on. Credit: NASA

The thrusters work by using electrical charge to accelerate ions from xenon fuel to speeds 7-10 times that of chemical engines. The power level and the fuel feed can be adjusted to act like a throttle. The thruster is very thrifty with its fuel, using a minor 3.25 milligrams of xenon per second, roughly 280g per day, at maximum thrust. The spacecraft carried 425 kg (937 pounds) of xenon propellant at launch. Xenon is a great fuel source because it is chemically inert, easily stored in compact form. Plus the atoms are very heavy so they provide large thrust compared to other comparable candidate propellants. At launch on Earth the xenon was 1.5 times the density of water. At full thrust the ion engines produce a thrust of 91 mN, which is roughly the force needed to hold a small sheet of paper. Over time these minute forces add up and over the course of years can produce very large speeds. The electrical power is produced by two 8.3 m (27 ft) x 2.3 m (7.7 ft) solar arrays. Each 18 meter squared (25 yard squared) array is covered in 5,740 individual photo voltaic cells. They can convert 28% of the sun’s energy into useful electricity. If these panels were on Earth they would produce 10 kW of energy. Each of the panels are on gimbals that mean they can turn any time to face the sun. The spacecraft uses a nickel-hydrogen battery to charge up and power during dark points in the mission.

The dawn mission patch.  This logo represents the mission of the Dawn spacecraft. During its nearly decade-long mission, Dawn will study the asteroid Vesta and dwarf planet Ceres Credit: NASA.

Vesta was discovered on March 29th 1807 by astronomer Heinrich Wilhelm Olbers, and is named after the Roman virgin goddess of home and hearth. The Dawn mission uncovered many unique surface features of the protoplanet ,twice the area of California, that have intrigued scientists. Two colossal impact craters were found in the southern hemisphere, the 500 km (310 miles) wide Rheasilvia basin, and the older 400 km (250 miles) wide Veneneia crater. The combined view of these craters was apparent even to the Hubble telescope. Dawn showed that the Rheasilvia crater’s width is 95% of the width of Vesta (it’s not perfectly spherical) and is roughly 19 km (12 miles) deep. The central peak of the crater rises to 19-25 km (12-16 miles) high, and being more that 160 km (100 miles) wide, it competes with Mars’ Olympus Mons as the largest mountain in the solar system. The debris that was propelled away from Vesta during the impacts made up 1% of its mass, and is now beginning its journey through the solar system. These are known as Vestoids, ranging from sand and gravel all the way up to boulders and smaller asteroids. About 6% of all meteorites that land on Earth are a result of this impact.


The brave new world of 4 Vesta, courtesy of NASA’s Dawn spacecraft. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA

Dawn mapped Vesta’s geology, composition, cratering record and more during its orbit. It also managed to determine the inner structure by measuring its gravitational field. The measurements were consistent with the presence of an iron core of around 225 km (140 miles), in agreement with the size predicted by
howardite-eucrite-diogenite (HED)-based differentiation models. The Dawn mission confirmed that Vesta is the parent body of the HED meteorites, by matching them with lab based measurements. These experiments measured the elemental composition of Vesta’s surface and its specific mineralogy. These results confirm that Vesta experienced pervasive, maybe even global melting, implying that differentiation may be a common history for large planetesimals that condensed before short-lived heat-producing radioactive elements decayed away. The pitted terrains and gullies were found in several young craters. This could be interpreted as evidence of volatile releases and transient water flow. Vesta’s composition is volatile-depleted, so these hydrated materials are likely exogenic (formed on the surface).

A colour coded topographic map from the Dawn mission of the giant asteroid Vesta. Credit: NASA/JPL

The first object ever discovered in the main asteroid belt was Ceres. Named after the Roman goddess of corn and harvest, it was discovered by Italian astronomer Father Giuseppe Piazzi in 1801. Initially classified as a planet, it was later classified as an asteroid as more objects were found in the same region. In recognition of its planet like properties (being very spherical) it was designated a dwarf planet in 2006 along with Pluto and Eris. Observed by the Hubble telescope between 2003 and 2004, it was shown to be nearly spherical, and approximately 940 km (585 miles) wide. Ceres makes up 35% of the mass of the main asteroid belt. Before Dawn there were plenty of signs of water on Ceres. First, its low density indicates that it is 25% ice by mass, which makes it the most water rich body in the inner solar system after Earth (in absolute amount of water). Also, using Hershel in 2012 and 2013, evidence of water vapor, probably produced by ice near the surface transforming from solid to gas (known as sublimating).

Dwarf planet Ceres is shown in these false-color renderings, which highlight differences in surface materials. Credit: NASA/JPL-CalTech/UCLA/MPS/DLR/IDA

Acquiring all the data it needed by the middle of 2016, Dawn measured its global shape, mean density, surface morphology, mineralogy, elemental composition, regional gravity and topography at exceeded resolutions. The imaging from the mission showed a heavily cratered surface with bright features. Often referred to as “bright spots” they are deposits of carbonates and other salts. Multiple measurements showed an abundance of ice at higher latitudes. However the retention of craters up to 275 km (170 miles) in diameter argue for a strong crust, with lots of hydrated salts, rocks and clathrates (molecules trapped in a cage of water molecules). Gravity and topography data also indicated that that Ceres’ internal density increases with depth. This is evidence for internal differentiation resulting from the separation of the dense rock from the low density water-rich phases in Ceres history. The rock settled to form an inner mantle overlain with a water-rich crust. This internal differentiation is typical of small planets like Ceres and Vesta that Sets them apart from asteroids.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

Considerations When Making a Current Shunt Sensor

For battery powered projects, current consumption is a really important consideration when designing the circuitry. While designing my final year project I spent a huge amount of time researching how to put together a simple current sensor. Considering most applications for me are DC, fairly low current and low voltage, the most obvious design is to make a current shunt. The basic idea of a current shunt is that you put a very low value resistor between the circuit you want to measure and ground, and measure the voltage across it. When one side is of the shunt resitor is ground it is low side, there are also high side versions but are mlre complex. As the resistor has a small resistance, there will be a low voltage drop (usually mV) across it meaning it shouldn’t affect the load circuitry. The voltage will also be proportional to the current running through it, meaning if you measure it, and do the right maths you can get a consistent and reliable current reading. This post is about how to get that tiny voltage into 1’s and 0’s, while thinking about the considerations that have to be made about the design to make it accurate and reliable in the environments you want.

Final Year Project
My final year project needed current sensors on the motors as well as monitoring the drain on the battery.

The first thing that needs to be decided is the shunt resistor itself. A shunt resistor is basically a low value resistor, with very tight and known tolerance usually with a fairly high power rating. It can be used in AC and DC circuitry, with the concept behind it being that as a current flows  though it, a voltage is induced across it. The voltage can then be measured and using a simple calculation (based on ohms law) converted into a value for current. The value of the resistor depends on what it is measuring and what is measuring it. Start with what is measuring it. If you are like me, it is likely that it will be read by an ADC, probably on a 5V or 3V3 microcontroller. The voltage across the resistor is going to be amplified between 10 and 100 times (we will get to why in a moment) so pick a maximum voltage within that range. I tend to go with 100mV maximum voltage drop, which for a 5V ADC would require an amplification of 50. Then, take the maximum value of current you want to be able to measure. You can then use ohms law to figure the resistance you need. For example if I wanted to measure 1A, the resistor would be 100mV/1A = 100 mohm. Now we know the resistor value, use the power equation to work out the power eating we want. For this example we would need P = I V = 1 x 0.1 = 100mW. This is the minimum power rating you need, I personally would get a 250mW or even a 500mW just to keep the temperature of the circuit down.

The simple equation to work out what sizesunt resistor to use. Credit: Texas Instruments 

Now we have a voltage that will be somewhere between 0 and 100mV with reference to ground. We want this value to be scaled up to 0 to 5V. To do this we are going to use an operational amplifier. There are plenty out there, and most people have their favourites and I’m not here to convince you otherwise. I tend to use an op amp that I am using somewhere else in the circuit to make life easier. There are a few things you do need from an op amp in this circuit though, it needs to be rail to rail, and have a low input offset voltage. Offset voltage in an op amp is the voltage difference on the inputs, and even though they are tiny differences they can have a big effect because we are amplifying small voltages, and any noise or offset will be amplified too. The op amp needs to be in a simple non inverting configuration. The equations needed to design this are in most first year textbooks and there are plenty of calculators online. I have set a gain of 50 in my calculation, which is in the fairly common range. The output of the amplifier can then go straight straight into an ADC to be measured.

The basic layout of a current shunt sensor showing where the shunt resistors and gain resistors go in the circuit. Credit: Texas Instruments 
The first version of my current sense test circuit, using an OP170 made by TI.

Now let’s look at a few places where errors can come into a design like this. There are two types of errors that occur in a circuit like this, gain error and offset error. A gain error is one where the output error gets further away from the ideal output as the current gets higher. An offset error is one that has the same amount of error whatever the input, just like an offset. The only common source of offset error in a circuit like this is from the offset error in the op amp discussed previously, solved with an improved choice of amplifier. The gain errors are usually due to a difference in resistance from the ideal. Many things can cause this, one is the tolerance of the resistor used, we want to use a precision resistor of 1% or less tolerance. Another cause could be temperature changes in the resistor itself, it may be next to a large MOSFET or other hot component, or could have too low of a power rating making it heat up, wither way a change in temperature means change in resistance. Layout can also be an issue, if tracks are too thin or too long they can add extra unwanted resistance.

Great graphs showing the difference between gain an offset error. Credit: Texas Instruments.

If you want to add a bit of fancyness into the project, or really need to measure down to low currents, you need to tackle the zero-current error. The problem is that when using an op amp, even a rail to rail one, it never quite reaches the power rails. Even the best ones can only get within 100mV or so of the power rails, this is known as saturation. Solving this involves moving the power rails slightly so the saturation point is less than ground. If you have a negative voltage rail you can use that but home projects tend to be single supply, so we need another power source. This can be made using a voltage inverter (a type of charge pump). Usually only needing an external capacitor to work, they are cheap and easy to integrate into a project. I used a LTC1983, which creates a negative 5V rail, but there are plenty of others such as the LM7705. Research what fits your circuit and cost point, and just attach the negative output to the negative supply rail of the op amp.

 A great graph showing how the zero current error occurs, and what it would look like if you tested it. Credit: Texas Instruments.

Most issues with error can be fixed during the hardware design phase. You can pick better op amps, such as ones designed to combat offset voltage. Some amplifiers have internal calibration procedures, and some such as chopper stabilizers are specifically designed to correct these problems. You can also use a potentiometer instead of a power resistor, but they are more susceptible to temperature and can be knocked. Another way is to fix issues in software by creating a calibration procedure. Using a calibrated precision current source and a multimeter, measure the reading of the ADC and compare the value to the reading from the instruments. You should get an offset and gain value that can then be used to calibrate the sensor.

A simple set up that I used to calibrate an early sensor, with a big power resistor as the load and a variable power supply to change the current. Marked down to put into calibration.

I would suggest trying out a few of these sensors in future projects, they don’t cost too much, and can be a valuable addition to a design. Especially for power sensitive devices, or smart sensors, this could be a better solution than an off the shelf or breakout board solution. If you want to hear more about my current sensor designs, and how well the testing and calibration went then comment or tweet at me. I already have some documentation that I may release at some point.

Follow @TheIndieG
Tweet to @TheIndieG

Getting Ugly, Dead Bugs, and Manhattan Style

If you are anything like me, you love to build small circuits. I like to try and get my head around how things work by making it in front of me. This is usually in the form of breadboarding, but sometimes that doesn’t cut it, and soldering is needed. Veroboard tends to be my go to for building a simple circuit as something a bit more permanent, but it doesn’t always lend itself to certain designs. Take a design with lots of grounding points in the design, like an RF circuit, it can be difficult to have lots of ground strips everywhere, and the extra capacitance can mess with those high frequency signals. Also, designs with lots of different separate signal traces going round the board can make for a real pain. lots of slicing the traces, which tend to lead to mistakes. With my constant desire for order and straight lines, and pretty layouts this can get annoying quickly. Recently I have found a few new and simpler ways to throw together simple circuitry. For any budding electronic engineer, they are good skills to add to an arsenal.

A veroboard design of a hybrid microphone amplifier and level shifter I made for a recent project, prototyped on veroboard, many mistakes were made.

Ugly Circuits

As the name suggests, ugly circuits are not always the prettiest of designs. There are a few different definitions of what makes an ugly circuit, but my favourite is any circuit where the components are not completely mechanically connected to the substrate. The substrate usually being a copper clad board, but not always. This method can be a tricky one to master, as it is literally a balancing act. The prefered method that I see this being used is having a single copper clad board as a giant unobstructed ground plane. Two wire passives are usually the easiest to start with (standard resistors/capacitors), soldering one side to ground, then soldering the other side to another component in the air. This means any point that is not grounded is usually floating physically in the air (but depending on how good you are it could have floating voltage too). This can be a big benefit to RF circuitry or circuits that need good solid grounding. The unobstructed copper clad board means anything connected to it has a great connection to ground. It is fairly easy to build simple passive filters, but gets very fiddly and fragile if you aren’t careful.

A very “haywire” circuit constructed in the ugly style by Rick Anderson – KE3IJ in 2006. An experimental stage of his AGC-80 Regan receiver.
Not sure on the origin of this one, but it is more chaotic rather than ugly. It is definitely in the ugly style.

Technically ugly circuits don’t have to have a substrate at all, although it makes life easier. There are plenty of examples out there of ugly circuitry that just connects pins to pins via small wires. As said before, it can be very fiddly to make a circuit like this, but it is much cheaper to make singles as there is no need for expensive copper clad board. Plus after plenty of practice one can get very good at doing it. The wires connecting the parts together can be part of the structure of the unit, and if designed correctly could be very strong. The construction method can be useful in certain circumstances, and as long as you have the components, it can be build easily with just a soldering iron and solder. Although there are some amazing looking circuits made from this method, the majority do earn the name of an ugly circuit. If you can make a pretty one I would love to see.

Nathanxl at the Electro music forums creates some amazing almost artistic music project using the ugly style, but they look incredibly hard to make.
An Arduino Uno made without any substrate, just wires and components. Made by Kimo Kosaka, it is not an ugly, but it uses an ugly style of construction.

Dead Bugs

No, this method does not actually use dead insects as a manufacturing material, but it may look like it. The idea is to take an IC, traditionally in a DIP package, and place it upside down on the substrate. Usually glueing, but not always, with the pins facing upwards, so it has the look of a dead bug. The pins can be bent to attach to the substrate if required, but they tend to be facing up. Taking many methods from ugly, the pins are usually directly connected to passives or wires to other chips. This means the mechanical connections are usually in the air. The benefit to this method is that you don’t have to waste time drilling holes in in the substrate, and can integrate IC’s into an ugly design fairly easily. If trying to use this method, just be weary that all the pins on the chip will be the wrong way round as it gets flipped when placed upside down. I recommend making your own diagram to go from to make life easier.

As you can see in this use of dead bug mixed with ugly construction made by JCHaywire is the chip flipped over and the pins moved about with all the connections floating in the air

Although not really dead bugs, the concept can be seen in many modifications of PCB’s. It is easy to order the wrong package or get sections of pins wrong when designing and ordering PCB’s, especially if you have manually made the part. So it is not uncommon to find upside down IC’s on prototype PCBs or even sometimes on short runs. That being said, anything smaller than a DIP or SOIC package can get very fiddly, and is difficult to hand solder, and will need some extra magnification. Don’t be deterred though, there are many examples of even QFN and even BGA devices being hand soldered in the dead bug form, with very thin gauge jumper wires. With plenty of practice and spares, it can be a useful method of saving money without having a new run of PCB’s.

A bodge on a PCB before the real chip arrives, a 6650 is being used in dead bug style to get the circuit working by Dave Curran.

Manhattan Style

This one is my favourite styles of circuit design on the cheap and quick, and if done right can be very pretty and efficient. The big issue with the ugly method is that it is difficult to create, and often difficult to follow, and horrible to document. Manhattan is an upgrade, using cut out sections of copper board as small islands, much like manhattan. This method means there are no connections floating in the air, as all points on a component are mechanically connected to copper clad in some way, even if it is only a small bit. This leads to generally a much nicer laid out board, that can easily be followed and replicated. It also allows for use of SMD components, which is possible with ugly, but very difficult. The small pads don’t have to be separate, they can simply be cut outlines on the same backplane, making the process cheaper, but get it wrong and it can get messy. I much prefer manhattan as a quick construction method, due to its neat look and ease of use. Another reason for the name Manhattan is the fact the capacitors and resistors tend to line up and are perpendicular to the substrate, looking a bit like tower blocks and skyscrapers like Manhattan itself.

A great example of Manhattan style soldering by Dave Richards. Solid copper substrate with QRPme pads to attach components together. 
Another impressive circuit in the Manhattan style by Dave Richards, this one is a high performance regen receiver, with a full write up on his blog.
An example by VE7SL – Steve of making his own pads for his amateur radio transmitters and receivers, using an Ebay punch to make the pads.

One step on from Manhattan style, and the final step before fully fledged PCB’s is a little known style called Pittsburg, much like the steak. I have also seen it be called muppet style, and I am sure there are many other names for it. It is very similar to an actual PCB, usually etched, a layout is carved into the board, with traces and pads. The difference from a PCB is the fact there are no holes anywhere to be seen. Meaning you get the benefit of being able to etch a nice looking layout at home, and the benefit of not needing expensive routers/drills that quickly break. To allow for the pads to be soldered to as the main mechanical connection they are much bigger to allow for more solder on a bigger surface area. These pads would be overkill for a thru hole project, but also allows for easy use of SMD components. You can sometimes see specialist pads like Pittsburg to use SMD chips on a Manhattan style board. It is a matter of taste and confidence. These methods are obviously not suitable for all prototypes, but could come in useful for your next project. 

A Pittsburgh style PCB at one point sold by Joe Porter, unsure if they are still sold.

A good source of the small pads used in Manhattan can be found here. Reasonable price, and if you are doing lots of prototyping you can even buy the tools to make it yourself!

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.


Roundup: Parker Solar Probe Launch

Rocket flames
An awesome image of the Delta IV heavy launching from pad 37B. Credit: Aerojet Rocketdyne.

At 07:31 UTC on August the 12th 2018 the 10th ever Delta IV heavy vehicle launched the long awaited Parker Solar Probe from Cape Canaveral Space Launch Complex 37B. The Delta 4 Heavy launched PSP towards a heliocentric orbit. The mission aims to “touch the sun”, and to get as close to the sun as man has ever been. Getting as close as 3.9 million miles from the sun, that’s roughly 4% of the distance between the Earth and the Sun (roughly 93 million miles).

time lapse
A great timelapse of the Delta 4 heavy launching towards the sun. Credit: Marcus Cote.

The Parker Solar Probe was named after Dr Eugene Parker who discovered the solar winds in 1958. He was present at the launch at the Kennedy Space Centre, seeing the 685kg spacecraft lifted. The 7 year mission will make 24 elliptical orbits of the sun, and uses 7 flybys of Venus to drop the low point of the orbit. It will make the closest point of the orbit closer than any other man made object in heliocentric orbit. It will enter the sun’s “atmosphere”, a section known as the corona, the outermost part of the atmosphere. Protected by a 4.5 inch sunshield, it can withstand temperatures of 2500F (1377C). The aim is to understand how the sun can creates and evolves solar flares and solar winds. It is to understand how the highest energy particles that pass the Earth are formed. It is hoped that it will revolutionise our understanding of the sun, to help us develop and create technology here on Earth.

The rocket has three RS-68A boosters, with the outbound boosters cutting off at T+3 min 57 sec, the core then cut off a minute and a half later at T+5 min 36 sec. The Delta’s cryogenic first stage engine was RL10B-2, which began burning at T+5 min 55 sec, and stopped its first burn at T+10 min 37 sec. This burn entered the 3,044 kg load into a 168 km x 183 km x 28.38 deg parking orbit. The second burn started at T+22 min 25 sec, and ended at T+36 min 39 sec, accelerating it to C3 of 59 km2/sec2, roughly 5,300 m/s out of LEO. At this point the Probe was in solar orbit, the Star 4BV separated at T+37 min 9 sec, with it firing at T+37 min 29 sec. The burn ended a minute and a half later at T+38 min 58 sec, accelerating it to 8,750 m/s beyond LEO. The Parker Solar Probe separated four and a half minutes later. The orbits after this point become much more complicated to get to the prefered orbit touching the sun.

Engineers at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, work on NASA’s Parker Solar Probe spacecraft. Parker Solar Probe will be the first-ever mission to fly directly through the Sun’s atmosphere. Photo & Caption Credit: NASA / JHU-APL

The Delta 380 was the first Cape Canaveral Delta to use the upgraded “common avionics” system for its flight controller. The rocket was shipped to the Cape over a year ago, with it being assembled in the SLC 37 HIF. The rocket was then rolled out to the pad in April 2018, and there was a wet dress rehearsal on June 2 and 6th. The initial date for launch was the day before, august 11th but it was scrubbed at T-1 min 55 sec. Some of the best images of these launches are now taken by amateurs. I usually post a few of the images, but this launch was different as most of those who placed their cameras just a few hundred feet from the rocket got very damaged equipment.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.

Follow @TheIndieG
Tweet to @TheIndieG

The Items Apollo 11 Left behind on the Moon

Aldrin Looks Back at Tranquility Base
Buzz Aldrin Looks Back at Tranquility Base just after deploying the Early Apollo Scientific Experiments Package (EASEP). Credit: NASA.

July 21st 1969. The time is 2:56 UTC, Neil Armstrong is taking the first steps on the moon, 20 minutes later Buzz Aldrin is following. The landing site looks clean apart from the big lander that is their lift home. By the end of the two hour EVA on the lunar surface the site would be walked over, science experiments laid out, and a pile of rubbish left in a pit. A view you don’t get to see in the images from Apollo 11, the astronauts left over 100 items on the lunar surface. Some commemorative, but mostly items they didn’t need for the return journey.

The plaque
The plaque attached to the lunar lander, with a message from all mankind, just in case some other being finds it. It commemorates the first steps on the Moon. Credit: NASA.

Famously landing in the sea of tranquillity, the Eagle lander has a number of official commemorative items attached to it. The main one is a plaque proclaiming “Here men from planet Earth first set foot upon the Moon. July 1969, A.D. We came in peace for all mankind.” Under the “we come in peace” is a golden replica of an olive branch. Nearby is a small aluminium capsule with a tiny Silicon disc inside. It contained on it messages from four US presidents, and seventy three other heads of state. It was sketched onto it in microscopic lettering, with the wording found here. There are also a few non official items taken there by the astronauts. An Apollo 1 patch in memory of Roger Chaffee, Gus Grissom, and Ed White who died in January 1967 in a fire inside the first Apollo capsule. They also left behind two military medals that belonged to Yuri Gagarin and Vladimir Komarov, both famous USSR cosmonauts. It showed the respect these men had for Soviet cosmonauts who had achieved so many firsts, and went through the same trials and tests they did.

The Apollo 1 patch
The patch for the famous Apollo 1 where Roger Chaffee, Gus Grissom, and Ed White tragically died in a fire. The patch was left on the Moon. Credit: NASA

On top of this they left the science experiments that they had used, such as the passive seismic experiment. The experiment that used meteorite impacts on the surface to map the inside structure of the Moon. They also placed a master reflector so that scientists could measure the distance from Earth precisely. This retroreflector still works, and if you have access to a powerful enough laser you can measure it yourself. They also had to pick up lots of moon rocks and moon dust as part of the science mission. They used sample scoops, scales and even a small hammer. There are also many specific tools that were needed, but were discarded before the return journey.

Map of Tranquillity base
Map of Tranquillity base including the Toss Zone where all the rubbish was discarded. Credit: NASA

Overall they left roughly 106 random bits if rubbish at the launch site. Including lots of tools like the hammers, chisel and brushes needed for sampling; astronaut EVA gear such as the over boots and and life support systems; and actual rubbish like the empty food bags, some armrests they wanted to dispose of; a TV camera; insulation blanket; pins and plastic covers for items like the flag (and the flag itself) plus the urine, defecation and sickness bags, although there is no word on whether they were used. They threw all the items into an area behind the lander known as the “Toss Zone”, basically just a rubbish pit.

Buzz with science
Buzz carrying science experiments to the required place slightly away from tranquility base. Credit: NASA

The astronauts left a surprisingly large amount of stuff on the Moon, but it does make sense, as they needed that weight to be replaced with the 300 kg of Moon rocks that they wanted to bring back, so they just left it all there. There is a full list of the items on this webpage, and its worth a look. Archived by the Lunar Legacy Project, they count it as over 106 items. Depending on how you count it, there can be over 116 items left by the Apollo Astronauts.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.


The Secret Side of Sleepy North Devon and Cornwall

Barrel Rock Bude
Barrel Rock at the end of the Breakwater on Bude beach, used to guide ships into the harbour.

North Devon and Cornwall, a sleepy area that is full of history of its fishing and farming past. Now with a bustling influx of tourists every summer to enjoy the museums, adventure parks and sunny beaches. Just getting back from a holiday there in Appledore It has all these things, but the one big thing I noticed was the large presence of military sites in the area. Just visible from Appledore is RMB Chivenor, a big marine base, as well as a Babcock site that has built military ships for over 160 years. Just down the road is a selection of old RAF radar stations and airfields, one of which is now a top secret GCHQ site that could be listening to a large portion of the world’s internet traffic.

View From Bude
A view of one of the satellite dishes at GCHQ Bude taken from Bude beach. Credit: me.

On a day trip to Bude in Cornwall, after the customary ice cream we took a walk down the beach and were drawn to the Breakwater. More specifically a big rocky section at the end of the breakwater called Barrell Rock. Named so because of the barrel on the end of a long pole used to guide ships around the dangerous rocky breakwater. It gave a great view of the beach and bude itself,  and the chapel said to be where Bude originated. One thing I did notice when looking north up the coastline was what looked like a satellite dish, and that got me wondering. Then I remembered we passed a single signpost on the way pointing to GCHQ. It turns out that just 6km up the coastline is GCHQ Bude.

A view of GCHQ Bude
A great View of GCHQ from the coastal path. Credit: Paul Phillips

Nestled between the small villages of Morwenstow and Coombe, during the second World War the Air Force built RAF Cleave. It was designed to house target and target support aircraft for the firing ranges along the north cornwall coast. After the war it then stayed in government hands, with little use. Then in the 1960’s it started changing. The main reason: in 1962 a satellite receiving station was established at Goonhilly Downs, mainly for linking with television satellites, it also carried large amounts of telecommunications data. A surprisingly important piece of satellite communications infrastructure it has played a key role in communications events such as the Muhammad Ali fights, the Olympic Games, the Apollo 11 Moon landing, and 1985’s Live Aid concert. Being only 100km south of RAF Cleave signals could be intercepted by placing receiver dishes on the grounds. Initially to intercept mainly signals from Intelsat, a commercial communications satellite, the construction of the station began in 1969, with two 27m dishes, with smaller dishes coming after. Initially signposted as CTOS Morwenstow (CTOS standing for Composite Signals Organisation Station), in 2001 when a third large dish was built the station was renamed GCHQ Bude.

RAF Cleave gun emplacement
Remains of an RAF Cleave gun emplacement, with the modern satellite dishes of GCHQ Bude behind

GCHQ Bude has come under fire many times because of the ethical implications of the work conducted there. Even as early as 1963 they could have been tapping the data classed as suspicious from the TAT-3 telephone undersea cable. There are cable landing points at Widemouth bay that connect the UK to the USA, just 10 km south of the Cleave camp. It was also featured in a BBC Horizons documentary where it is claimed that all the data that goes through that the internet landing cable at Skewjack farm in Cornwall (formerly RAF Sennen) is sent on to GCHQ Bude for processing. The Fiber-Optic Link Around the Globe cable that surfaces there is estimated to see around 25% of all internet traffic, just think about that for a second. In terms of satellite installations at GCHQ Bude there are twenty one satellite antennae of differing sizes, three of which having a diameter of 30m. In theory these dishes could cover all the main frequency bands. Based on the position, some have theorised that they are oriented towards satellites of the INTELSAT, Intersputnik, and INMARSAT communications networks over the Atlantic Ocean, Africa, and the Indian Ocean, as well as towards the Middle East and mainland Europe. As well as this in 2011 a torus antenna was installed which is able to receive signals from up to thirty five satellites at once.

GCHQ Bude facing East
A wide image of GCHQ Bude facing east with a sunset in the background.

This post is not about my opinion about what they do at GCHQ but I find it a very interesting place, with a serious amount of technology involved, but they have been in the news a lot. A report made public in 2001 showed concerns by some EU member states that CTOS Morwenstow was involved in industrial espionage. It is claimed that the Intelligence Services Act 1994 grants GCHQ access to anything that emitted an electromagnetic signal, so pretty much any electronic device. In 2011 the Guardian reported how GCHQ attempted to gain access to the Blackberry Messenger service for the use of police to trawl for riot organisers. In 2013 the Guardian reported a large amount of information about GCHQ Bude leaked by Edward Snowden. It talked about operation Tempora, where GCHQ tapped into undersea cables and kept the data for up to 30 days to assess and analyse it. A further article reported that it was eavesdropping on charities, German government buildings, the Israeli Prime Minister, and an EU commissioner. There are plenty of other similar articles out there with similar overtones, and about GCHQ in general. The thing I found crazy is that even though trespassing on the site is its own law, you can walk fairly close when going along the coastal path.

RAF Hartland Sign
A sign at one of the old radar stations at RAF Hartland Point, now used by the aviation authority. Credit: Exal66 on derelictplaces.co.uk

When researching this subject it can get into a deep pit of conspiracy, but the thing I enjoy the most is looking at old military installations. Just up the coast from Bude in the northwestern point of Devon is Hartland Point. We visited Hartland Quay (close by) and it is highly recommended for the views. Apart from the hundreds of shipwrecks along that coastline, a noticeable part of the view is the old radar station at the point. During World War 2 that was controlled by RAF Hartland Point. The foundations of the big type 11, 13 and 14 radars can still be seen around the radar station at the point. Great information about the radar systems and some more information about the base can be found here. There is also an old air raid shelter, and a former station building that has been commandeered by the coastguard. The radar that can be seen nearby (the spherical one) is used by the UK Civil Aviation Agency for air traffic control. A user on derelictplaces.co.uk shows some great images of his walk around the site.

RAF Hartland base
The base of a radar from WW2 at what was RAF Hartland point. The aviation authorities new radar is in the background. Credit Exal66 on derelictplaces.co.uk

The final place I want to mention is one that is very noticable to anyone who has called the Tarka Trail between Fremington and Bideford. It passes right across the river from the historical Appledore shipbuilders. With many owners and names in the 160 years it has been active, it is now owned and operated by Babcock international Ltd, the same company who run Devonport. The dockyard has built more than 350 vessels in its lifetime, including small and medium-sized military craft, as well as superyachts, bulk carriers, ferries and oil/LPG industry vessels. While we were there a Norwegian military ship was being worked on. Some of the most notable ships include HMS Echo, HMS Enterprise, HMS Scott, and RRS Charles Darwin. A trip down the Tarka Trail is highly recommended, especially by bike.

Appledore Babcock
The shipbuilders at Appledore, now owned and run by Babcock international, visible by the Tarka Trail.

Thank you for reading, take a look at my other posts if you are interested in space, electronics, or military history. If you are interested, follow me on Twitter to get updates on projects I am currently working on.


Record Breaking Falcon 9 Launch

Telstar 19V
The awesome flames of the Falcon 9 Block 5 carrying Telstar 19V. Credit: Marcus Cote.

On the 22nd of July 2018, at 05:50 UTC a record breaking Block 5 Falcon 9 launched Telstar 19V into subsynchronous transfer orbit. Launching from Cape Canaveral Space Launch Complex 40, F9-59 (launch designation) was the First Block 5 to launch from this pad. The 7,075 kg payload was more than the previous record holder, the 6,910 kg TerreStar 1 orbited by the Ariane 5 in July 2009. Although, the previous record holder launched the satellite to full geosynchronous transfer orbit. This launch was seen as a key test of the newly developed Block 5 launch system. The first stage was recovered on the autonomous drone ship “Of Course I Still Love You” off the Florida coast.

Telstar 19V medium
A great view of SLC-40 from across the water while Telstar 19V is being launched. Credit: SpaceX Flickr.

An SSL 1300 series satellite, Telstar 19V is part of the Telstar series. Owned by the Canadian Satellite Company Telsat, it was built by Space Systems Loral (MAXAR). Using Ka and Ku band transponders it is branded as a high throughput communications satellite, designed for high bandwidth applications that the communications industry is currently dealing with. It is collocated with Telesats Telstar 14R satellite at the same position. The companies first high throughput satellite was Telstar 12V, which sits 15 degrees west.

The upgraded engines of the Merlin 1D engines on the Falcon 9 block 5 can produce a total of 775.65 tonnes of thrust at sea level. The second stage produces roughly 100 tonnes of thrust when in space. The first stage with the designation B1047 burned for 2 minutes and 30 seconds before separating to perform reentry and landing burns. The second stage burned for 5 minutes and 38 seconds to reach a parking orbit, stopping T+8 minutes 12 seconds. The stage restated at T+26 minutes 49 seconds for a 50 second burn to put the satellite into a 243 x 17,863 km x 27 degree orbit. The satellite will then raise itself into a geostationary orbit at 63 degrees west to cover the Americas.

Telstar 19V long exposure
A great long exposure of F9-59 launching Telstar 19V from Florida’s Cape Canaveral. Credit: SpaceX.

A total of 26 Falcon 9/Falcon Heavy core and booster stages have now been recovered in 32 attempts. Four of those successful landings have been on “Just Read The Instructions” off the California coast, 10 have been at Cape Canaveral Landing zone 1&2, and 11 on “Of Course I Still Love You off the Florida coast. Twenty unique first stages have been recovered, with fourteen of them flying twice, and eight being expended during their second flight. All of the successfully recovered first stages have been version 1.2.

Telstar 19V medium 2
A Falcon 9 launches from Space Launch Complex 40 with a record breaking satellite aboard. Credit: SpaceX Flickr.

To find similar photos, and to buy reasonably priced prints of some of the above visit www.marcuscotephotography.com

Delta II Launch Site Demolished

Delta II launch
The launch of the GRAIL mission from Launch Complex 17 by a Delta II. The final launch from SLC-17. Credit: NASA/Tom Farrar and Tony Gray

At 11:00 UTC on the 12th of July 2018 the two launch towers of Space Launch Complex 17 were demolished by controlled explosions. The crowd of onlookers cheered as the towers fell, and took some great images and videos of the demolition. The launch site had not been used since 2011 when Delta II 7920H-10C fired NASA’s GRAIL spacecraft towards the Moon. The launch complex had two pads named 17A and 17B. The site is now to be reused as a test bed for potential lunar landers made by Moon Express. Boasting some very prestigious missions well beyond Earth SLC-17 will be remembered as an important part of the history of American space.

Delta Echo 1
A delta Rocket carrying NASA’s Echo 1 satellite launching August 12th 1960. The Echo satellite inflated in orbit to reflect signals back to Earth. Credit: NASA.

It was built in 1956 for use as a launch site for the PGM-17 Thor missile. This was the first operational ballistic missile that the United States had in their arsenal. The first launch of a Thor missile from 17A was 3rd of August 1957, with the first launch from 17B being 25th of January 1957. In the early 1960s the site was upgraded to support a variety of Expendable Launch Vehicles, all of which were derived in some way from the Thor booster. We now know this family of rockets as the Delta rockets used by the United Launch Alliance. Thirty five early Delta rocket missions were launched from LC-17 between 1960 and 1965. At that point operated by the US Air Force. In 1965 the operation of the site was transferred to NASA.

View of LC-17
View of LC-17 viewing East. A fairly old photo taken by the U.S. Army Corps of Engineers. Credit: Martin Stupich

In 1988 the site was returned to the Air Force to support the Delta II program. The site had to be modified to facilitate the new more powerful rocket, with new platforms being installed and the D=Ground Service Tower was raised by 10 ft. The program entered service in 1989 after worries about the shuttle due to the Challenger disaster. Pad 17B was modified in 1997 to support a newer more powerful launch vehicle the Delta III which made its maiden flight on 26th of August 1998. Ending in failure, the next three attempts were failures in some sense and the programme was abandoned in late 2000. The Delta II continued to launch, with it’s fairly cheap price tag, and amazing track record it has been a favourite for NASA on a number of big projects. This post by NASA explains how the layout of the site and the small teams allowed LC-17 to be efficient and consistent over it’s 50 year lifespan. Some Delta II launches could be within days of each other because the launch crews were so effective.

Space Launch Complex 17
A view of Space Launch Complex 17, pads A and B taken in 2007. Delta II rocket with THEMIS aboard sits on Pad B. Credit: NASA/George Shelton

There have been some very famous spacecraft launched from SLC-17 in the years, mostly by Delta I and II rockets. Among them the Explorer and Pioneer space probes studying the physics of our solar system, and exploring some of it. All of the Orbiting Solar Observatories between 1962 and 1975 were launched from this site, as well as the Solar Maximum mission in 1980. Some of the first weather satellites like TIROS and later GOES were launched from SLC-17 allowing much better understanding of weather and improving (mainly military) weather reports. My personal favourite launches are those of the Mars Exploration Rovers in 2003. Both spirit and Opportunity (still going) were launched from this important launch site.

Spirit lifting off
A Delta II launching from pad SLC-17A with the MER-A or Spirit Rover towards Mars on June 10th 2003. Credit: NASA/KSC

Space Launch Complex 17 is also famous for being the last site where you had to press a button to launch the rocket. Most pads had a computerized auto-sequencer, much like the space shuttle, and in the modern world of rocketry it makes much more sense to do that. Even after 1995 when they got rid of the button (sadly) a human needed to press go on a computer to say launch. Bill Hodge, an electrical engineer at the launch complex said “If you didn’t push that button, it didn’t launch.” Tom Mahaney, project manager for the closeout of the complex described the site as “hectic, but not dysfunctional.” This is the best description I can find of this massively important historical site. In its time it has supported a total of 325 Thor and Delta rocket launches!

Thank you for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.


How the Moon’s Dust Could be Deadly

footprint on the moon
Very famous image of a footprint in the lunar soil, part of the 70mm Hasselblad image collection, you can see the dust and rocks that are classed as mature Regolith, Credit: NASA.

The space industry is changing, improving and looking at places to go. Although Mars is the big target for Elon Musk and SpaceX, revisiting the Moon is a big and real challenge that many are aiming for. Whether it is just getting people back there in a safer and cheaper way than Apollo or if it is companies wanting to design Moon bases, it is an active area of interest. Since the Moon landings over half a century ago, researchers have poured over the moon rocks, and images brought back from the mission. More recently though, researchers are looking at a slightly overlooked factor, lunar dust. They were a problem for the astronauts to landed there in the 60’s/70’s and they may pose a problem to future missions where they may spend weeks or months rather than just a few hours/days. The research below shows how the moon moon affects us when we are there, and how it could be very dangerous.

Harrison Schmitt collects samples
NASA astronaut Harrison Schmitt retrieving lunar samples using a scoop during the Apollo 17 mission in 1972. Credit: NASA.

At time of writing, twelve people have been known to walk on the Moon, all between 1968 and 1972. The longest any group spent on the Moon was the crew of Apollo 17 who spent just over three days there. Sleeping in the Lunar Exploration Module, the astronauts tended to collect lots of dust during the EVA’s (Extravehicular Activity). As the moon has a much lower magnetic field it gets blasted with much more radiation from the sun on the surface.  This electrostatically charges the dust particles making it much more likely to stick to the astronauts spacesuits. This linked with the lower gravity of the Moon means that the particles do not drift to the ground as fast like on Earth. Plus when the dust got into the Spacecraft it had no gravity on the trip home. All these factors meant that the astronauts inhaled lots of lunar dust during the mission.

Lunar dust particle
Fine like powder, but sharp like glass. An image of a lunar dust particle. Credit: NASA/JSC.

On earth, dust tends to be fairly round, eroded over time by wind and water. It is also not only rocks, but biological as well,  On the moon, the dust is just rocky and hasn’t been eroded over time as there is no wind or water. The particles are spikey, abrasive and nasty. All twelve of the people who landed on the moon suffered with what NASA astronaut Harrison Schmitt described as “lunar hay fever”. They had symptoms like sneezing, nasal congestion and often they took time to fade. Most people know that the astronauts describe the dust as smelling like burnt gunpowder, but don’t know that it made them quite ill. Even the astronauts themselves might not have known the true reasoning behind the illness. Part of the reason is that the lunar dust has silicate in it, often found on planetary bodies with volcanic activity. As well as making the astronauts ill, it was so abrasive that it ate away at layers in the spacesuit boots, and destroyed vacuum seals on sample containers.

Eugene Cernan Hay fever
NASA astronaut Eugene Cernan inside the lunar module, still on the moon after his second moonwalk of Apollo 17. With spacesuit covered in lunar dust he complained of hay fever like symptoms. Credit: NASA.

One study by Stony Brook University School of Medicine, NY looked into the toxicity and DNA damage as a result of exposure to Lunar dust. They attempted to mimic the effect of lunar regolith (the dust) on mammalian cells. They took lung and neuronal cells and then exposed them to materials processed to mimic lunar dust so they could assess survival and genotoxicity. They showed that the soil can cause death to some cells and DNA damage in both neuronal and lung cell lines. Certain forms of the dust had more effect than others, but it was shown that depending on conditions, lunar soil can be cytotoxic (toxic to living cells) and genotoxic (damages genetic information) to both neuronal cells and lung cells. Testing was done by cultures and not tested on real people or animals. Kim Prisk, a pulmonary physiologist from the University of California with over 20 years of experience in human spaceflight is taking part in similar research as Part of an ESA research program. She mentions that “Particles 50 times smaller than a human hair can hang around for months inside your lungs. The longer the particle stays, the greater the chance for toxic effects”. ESA make simulated moon dust from a volcanic region in Germany. See their post on Lunar dust here.

Thank You for reading, take a look at my other posts if you are interested in space or electronics, or follow me on Twitter to get updates on projects I am currently working on.